GENERAL NOTES

- VERIFY COLLAR SIZES ON ALL AIR TERMINALS, EQUIPMENT OUTLETS AND INLETS, TRANSITION DUCTWORK AS NECESSA CONNECTIONS.
- FIELD VERIFY CLEAR SPACE AVAILABLE, ROUTING PATH, AND CONFLICTS WITH STRUCTURE AND THE WORK OF OTHER OFFSETS IN DUCTWORK AS REQUIRED, WHETHER SPECIFICALLY INDICATED ON DRAWINCS OR NOT. SUBMIT SHOP D COMMENCING WORK. MAINTAIN CLEARANCE AROUND ALL LICHT FIXTURES AS REQUIRED TO REMOVE AND SERVICE TRUSSES/STRUCTURE. PRESSURE TEST ALL NEW DUCTWORK FOR LEAKS. SEE SPECIFICATIONS.
- CONTRACTOR SHALL INSTALL ALL EQUIPMENT, PIPINC, AND DUCTWORK SUCH THAT MANUFACTURERS' RECOMMENDE MOTORS, FANS, BELTS, FILTERS AND AIR INTAKES. CONDENSATE LINES SHALL BE CLEAR OF FILTER RACK ACCESS.
- PROVIDE DUCT FLEX CONNECTIONS & VIBRATION ISOLATION FOR ALL EQUIPMENT WITH ROTATING ELEMENTS THAT IS
- WASTE VENT STACKS, EXHAUST FANS, ETC. SHALL BE A MINIMUM OF 10 FT. FROM OUTSIDE AIR INTAKES.
- ALL AHU FILTERS SHALL BE OF A READILY AVAILABLE SIZE, OF DISPOSABLE TYPE, AND BE ACCESSIBLE WITHOUT THE U 6. **REQUIRING TOOLS.**
- PROVIDE ACCESS PANELS IN HARD CEILINCS AS REQUIRED FOR MAINTENANCE AND ADJUSTMENT OF DAMPERS, VALV
- 8. ALL BIRD AND INSECT SCREENS SHALL BE ANODIZED ALUMINUM.
- BECAUSE OF THE SMALL SCALE OF CONTRACT DOCUMENTS IT IS NOT POSSIBLE TO SHOW ALL OFFSETS, TRANSITIONS, 9. DIACRAMATIC. THE CONTRACTOR SHALL PROVIDE SHOP DRAWINCS COORDINATED WITH THE STRUCTURE AND ARCH WORK
- 10. THIS PROJECT SHALL INCLUDE COMMISSIONING OF THE HVAC, CONTROLS, AND RELATED ELECTRICAL SYSTEMS. THE PROVIDED UNDER SEPARATE CONTRACT. UNDER THIS CONTRACT, THE PRIME CONTRACTOR, SUBCONTRACTORS, AN AND MATERIAL AS REQUIRED TO ASSIST AND PARTICIPATE IN THE COMMISSIONING PROCESS FOR THE SCOPE OF WO SPECIFICATIONS.
- 11. ALL WORK SHALL COMPLY WITH 8TH EDITION (2023) FLORIDA BUILDING CODE
- SEAL AND PROTECT ALL WORK IN PROGRESS DURING CONSTRUCTION SUCH AS DUCT AND PIPING TO PREVENT ACCU
- WHERE EXISTING DEVICES OR SYSTEMS ARE SHOWN TO BE REMOVED, REMOVE ALL ASSOCIATED SUPPORTS AND COL
- 14. DDC CONTROLS MAY UTILIZE EXISTING CONDUIT AND DEVICES BOXES WHERE THE EXISTING LOCATION DOES NOT C

DUCTWORK AND INSULATIO

- ALL ROUND FLEXIBLE DUCT SHALL BE FLEXMASTER TYPE 8M OR ENCINEER APPROVED EQUAL. MAXIMUM LENGTH OF LENCTH REQUIRED EXCEEDS 5'-0", INSTALL EXTERNALLY INSULATED ROUND SNAPLOCK DUCT FOR BALANCE OF DISTA
- 2. SEAL ALL DUCT PENETRATIONS OF WALLS AND FLOORS AIRTICHT, RECARDLESS OF WHETHER WALLS AND FLOORS ARE
- EXCEPT AS INDICATED IN NOTE No. 2, ALL SUPPLY AIR DUCTWORK UPSTREAM OF AIR TERMINAL UNITS SHALL BE MEDI SEAM AS INDICATED. MEDIUM PRESSURE DUCT SHALL BE SMACNA STATIC PRESSURE CLASS 6" W.C., SEAL CLASS A, E MINIMUM INSTALLED R-VALUE OF 6.0. DUCT SIZES INDICATED ARE INSIDE CLEAR DIMENSIONS.
- PROVIDE DOUBLE-WALL ROUND OR FLAT OVAL SPIRAL SEAM DUCTWORK AT THE DISCHARGE OF EACH AIR HANDLING HAVE 2" THICK, 3 IS DENSITY INSULATION SANDWICHED BETWEEN THE OUTER CALVANIZED SPIRAL WALL AND THE IN PROVIDE DOUBLE-WALL DUCT FOR THE FIRST FITTING AND THE FOLLOWING 40 FEET OF DUCT. IF THE FIRST FITTING IS EXTEND 40 FEET IN ALL DIRECTIONS. DUCT SIZES INDICATED ARE INSIDE CLEAR DIMENSIONS. DOUBLE-WALL FITTING
- ALL SUPPLY AIR DUCTWORK DOWNSTREAM OF AIR TERMINAL UNITS SHALL BE LOW PRESSURE RECTANCULAR OR ROU PRESSURE CLASS 2" W.C., SEAL CLASS B EXTERNALLY INSULATED WITH 2" THICK DUCT WRAP WITH A MINIMUM INSTAL CLEAR DIMENSIONS.
- ALL OUTSIDE AND RETURN AIR DUCTWORK SHALL BE LOW PRESSURE RECTANCULAR CALVANIZED SMACNA PRESSURE HIDDEN ABOVE CEILINCS SHALL BE EXTERNALLY INSULATED WITH 2" THICK DUCT WRAP WITH A MINIMUM INSTALLED MECHANICAL ROOMS SHALL BE EXTERNALLY INSULATED WITH 2" THICK RIGID INSULATION BOARD WITH A MINIMUM I SUITABLE FOR PAINTINC.
- ALL TRANSFER DUCTS SHALL BE INTERNALLY INSULATED WITH 1" THICK ACOUSTICAL DUCT LINER. DUCT SIZES INDICAT OTHERWISE.
- 8. STANDARD EXHAUST AIR DUCTWORK SHALL BE CALVANIZED LOW PRESSURE RECTANCULAR OR ROUND, SMACNA STA NOT REQUIRED.
- AVOID ROUTING DUCTWORK AND LOCATING TU'S WITHIN 6" OF TOP OF LIGHT FIXTURES WHEREVER POSSIBLE. MAINT TOP OF LICHTS. PROVIDE CLEARANCE ALL AROUND AIR TERMINAL UNITS AS REQUIRED FOR ROUTINE MAINTENANCE.
- 10. ALL DUCTWORK WALL PENETRATIONS SHALL BE SEALED AIR TICHT RECARDLESS WALL FIRE RATING STATUS.
- 11. ALL DUCTWORK PENETRATING FIRE RATED WALLS SHALL BE PROVIDED WITH A FIRE DAMPER AS REQUIRED BY CODE.
- 12. PROVIDE MVD'S AT ALL NEW TAKEOFFS FROM DUCTS WHETHER SPECIFICALLY SHOWN OR NOT.
- 13. PROVIDE DUCT ACCESS PANELS AT ALL AIR FLOW MEASURINCS STATIONS, SMOKE DETECTORS, AND MOTORIZED DAM
- 14. WHERE DUCTWORK IS REMOVED FROM A TRUNK LINE AND THE OPENING IS NOT TO BE REUSED OR ENLARGED, CLOS WITH MASTIC. INSULATE TO PER PROJECT SPECIFICATIONS FOR NEW DUCTWORK.

PIPING GENERAL NOT

- BUTTERFLY VALVES INDICATED FOR FLOW BALANCING AND SHUT OFF SERVICE SHALL BE PROVIDED WITH INFINITE PROVIDED WITH I HYDRONIC TEST AND BALANCE HAS BEEN COMPLETED, THE CONTRACTOR SHALL POSITION THE MEMORY STOP AT TH STAMPED ALUMINUM TAG FOR EACH VALVE INDICATING "BALANCING VALVE - DO NOT REMOVE MEMORY STOP - RET
- PROVIDE AIR CHAMBER AND AUTOMATIC AIR VENTS AT ALL HIGH POINTS IN SYSTEM, PIPE TO FLOOR DRAIN WITH CO 2. SHEET M300.
- BUTTERFLY VALVES FOR SHUT OFF SERVICE SHALL BE PROVIDED WITH STAMPED ALUMINUM TAC INDICATING "SERVICE VALVE."
- 4. ALL CONNECTIONS TO AIR VENTS AND PRESSURE CACES SHALL BE MADE WITH BRASS PIPINC.
- INSTALL PIPE HANCERS NEXT TO AND ON BOTH SIDES OF ALL EQUIPMENT.
- 6. SEAL ALL PIPE PENETRATIONS OF WALLS AND FLOORS AIR TICHT RECARDLESS OF WHETHER WALLS OR FLOORS ARE FIRE RATED OR NOT.
- 7. REFER TO SHEETS M302 AND M303 FOR FIRE AND SMOKE WALL PENETRATION DETAILS.

	<u></u>	
ARY. EXTERNALLY INSULATE TRANSITIONS AT EQUIPMENT	<u>AHU-2</u>	AIR HANDLING UN
R TRADES PRIOR TO FABRICATING DUCTWORK. PROVIDE PRAWINCS ON DUCTWORK LAYOUT PRIOR TO	<u>TU-2.1</u>	AIR TERMINAL UNIT
E FIXTURES. COORDINATE WITH ROOF	<u>HWP-1</u>	HEATING WATER P
ED CLEARANCES ARE MET FOR ALL ACCESS PANELS,	$\langle 1 \rangle$	SHEET NOTE
	\bowtie	RECTANCULAR SUF
S NOT FACTORY-INTERNALLY ISOLATED.		RECTANGULAR RET
	EX. 10"x8"	EXISTING EQUIPME
USE OF SCREWS OR OTHER MECHANICAL DEVICES	10"x8"	EXISTING EQUIPME
VES, AND EQUIPMENT LOCATED ABOVE CEILING.	10"x8"	RECTANGULAR DU SHOWN ARE INSID ON THIS SHEET.
6, ETC. THE CONTRACT DOCUMENTS ARE ESSENTIALLY CHITECTURAL WORK FOR REVIEW PRIOR TO COMMENCING	8"Ø 10"x8" FO	DOUBLE-WALL, FA SPIRAL SEAM DUCT DUCTWORK AND I
E SERVICES OF THE COMMISSIONING AUTHORITY ARE ID EQUIPMENT MANUFACTURERS SHALL PROVIDE LABOR ORK AS DESCRIBED IN SECTION 15995 OF THE PROJECT	8"Ø 10"x8" FO	SINCLE-WALL ROU INSIDE CLEAR DIM SHEET.
		SQUARE THROAT E TURNING VANES. I TURNING DIMENSI
	\Box	LONG RADIUS (RAI PROVIDE FOR ALL
ONFLICT WITH NEW WORK.	8°Ø	TURNING DIMENSI
ON NOTES		DUCT. SIZE SHOWI
ANY FLEXIBLE DUCT RUNOUT SHALL BE 5'-0". WHERE	丁丁	BE FLEXIBLE ROUN ROUND DUCT CON FITTING WITH A MA
ance to spin-in tap at main duct trunk. Re fire rated or not.	FD	Fire Damper in D Duct Immediatel' Sheet M302.
IUM PRESSURE GALVANIZED ROUND OR FLAT OVAL SPIRAL	MVD	MANUAL VOLUME
EXTERNALLY INSULATED WITH 2" THICK DUCT WRAP WITH A		DUCT. PROVIDE OF ACD SHALL BE A M
G UNIT AND AS INDICATED. DOUBLE-WALL DUCT SHALL INER PERFORATED WALL. UNLESS INDICATED OTHERWISE,		RECTANGULAR TO
S A PLENUM OR A Y-FITTING, DOUBLE-WALL DUCT SHALL S SHALL ALSO HAVE A PERFORATED INNER LINER.		RECTANGULAR BR/
UND GALVANIZED AS INDICATED, SMACNA STATIC	H	TAKE-OFF SHALL B
LLED R-VALUE OF 6.0. DUCT SIZES INDICATED ARE INSIDE	\rightarrow	SUPPLY AND OUTS
E CLASS 3" W.C., SEAL CLASS B. DUCTWORK THAT IS	_ ∕~ >	RETURN AND EXH
R-VALUE OF 6.0. DUCTWORK THAT IS EXPOSED IN INSTALLED R-VALUE OF 6.0 AND A FIELD APPLIED JACKED	← 📐 → ↓ 8'ø CD 300 CFM	CEILING DIFFUSER FLOW AS INDICATE MODEL TMS OR AP M301
TED ARE INSIDE CLEAR DIMENSIONS UNLESS NOTED		RETURN AIR CRILLE
ATIC PRESSURE CLASS 1" W.C., SEAL CLASS A, INSULATION	20"x20" RAC 750 CFM	INDICATED. TITUS I 24"x24" EXTENDED SQUARE TO ROUN
TAIN CLEARANCE BETWEEN TU'S AND DUCT INSULATION TO		SIDEWALL RECISTE DIRECTION OF THE
	300 CFM	VOLUME DAMPER 300RS OR APPROV
	(I)	SPACE TEMPERATU MOUNT AT 48" A.F
MPERS.	\mathbf{A}	CONNECTION OF
SE THE DUCT TO MATCH EXISTING MATERIAL AND SEAL		AIRFLOW MEASURI
TES	(\$)	DUCT MOUNTED SI DUCT BY DIVISION
OSITION THROTTLING HANDLE AND MEMORY STOP. AFTER	<u>}</u>	INTERNALLY LINED
HE FINAL BALANCE POINT OF EACH VALVE. PROVIDE TURN TO BALANCE SETTING."	∑ 22' × 22' TC	TRANSFER CRILLE. MODEL 350FL OR PANEL FOR INSTAL
OPPER TUBING. SEE "AUTOMATIC AIR VENT DETAIL" ON		RETURN CANOPY (

LEGEND

HANDLING UNIT TAG	—CHWS—	CHILLED WATER SUPPLY PIPING	ACD
TERMINAL UNIT. '2' IS THE ASSOCIATED AIR HANDLER UNIT TAC, '1' IS THE	—CHWR—	CHILLED WATER RETURN PIPINC	aff Ahu
	—HWS—	HEATING WATER SUPPLY PIPING	ASHRAE
	—HWR—	HEATING WATER RETURN PIPING	
		DOMESTIC COLD WATER PIPINC	C
CIANGULAR SUPPLY OR OUISIDE AIR DUCIWORK IN SECTION.		DIRECTION OF WATER FLOW	CD CFM
TANCULAR RETURN OR EXHAUST AIR DUCTWORK IN SECTION.	$-\bowtie$	CATE VALVE	CHWR
sting equipment, duct, or piping to remain.	—a—	BALL VALVE	CONT
sting equipment, duct, or piping to be removed.		BUTTERFLY VALVE	DDC
TANCULAR DUCTWORK. FIRST DIMENSION INDICATES SIDE SHOWN. SIZES DWN ARE INSIDE CLEAR DIMENSIONS. SEE 'DUCTWORK AND INSULATION NOTES' THIS SHEET.		CHECK VALVE	DN DWCS
UBLE-WALL, FACTORY INSULATED, SOUND ATTENUATING ROUND OR FLAT OVAL		2-WAY CONTROL VALVE	EA
RAL SEAM DUCTWORK. SIZE INDICATED IS INSIDE CLEAR DIMENSION. SEE CTWORK AND INSULATION NOTES' ON THIS SHEET.		3-WAY CONTROL VALVE	EF EC ENT
CLE-WALL ROUND OR FLAT OVAL SPIRAL SEAM DUCTWORK. SIZE INDICATED IS IDE CLEAR DIMENSION. SEE 'DUCTWORK AND INSULATION NOTES' ON THIS EET.	⊣≩⊢⊷∲⊢	BUTTERFLY OR BALL VALVE WITH MEMORY STOP FOR FLOW BALANCING	ESP EX
JARE THROAT ELBOW IN RECTANCULAR DUCTWORK WITH DOUBLE WALL	—- []—-	PIPE FLANCE	FD
NING VANES. PROVIDE FOR ALL RECTANGULAR DUCT LARGER THAN 12" IN THE NING DIMENSION.		UNION	FO
NG RADIUS (RADIUS IS MINIMUM 1-1/2 TIMES THE TURNING DIMENSION) ELBOW. DVIDE FOR ALL ROUND DUCT AND RECTANCULAR DUCT 12" OR SMALLER IN THE		FLEXIBLE PIPE CONNECTOR	FI FI ²
RNING DIMENSION. TTORY FABRICATED AND INSULATED SOUND ATTENUATING FLEXIBLE ROUND	Р/Т	Combination pressure and Temperature test pluc with extended NECK and Cap	CALV HP
CT. SIZE SHOWN IS INSIDE CLEAR DIMENSION. MAXIMUM LENGTH IS 8 FEET.		STRAINER WITH BLOW DOWN CATE VALVE	HWP
UND BRANCH TAKE-OFF FROM RECTANCULAR MAIN DUCT. BRANCH DUCT SHALL FLEXIBLE ROUND DUCT OR ROUND METAL SNAPLOCK DUCT AS INDICATED. UND DUCT CONNECTION SHALL BE MADE WITH A 45 DECREE SIDE TAKEOFF	ABI	FULL SIZE OF STRAINER AND 3/4" HOSE END CONNECTION WITH CAP	HWS
	ġ	PRESSURE CAUCE WITH 1/4" BALL VALVE	IN-H ₂ O
E DAMPER IN DUCT PENEIRATION OF HRE RATED WALL. PROVIDE ACCESS IN CT IMMEDIATELY ADJACENT TO DAMPER. SEE 'VERTICAL FIRE DAMPER DETAIL' ON	Į		LVC
ET M302.	P	THERMOMETER WITH 1/4" BALL VALVE	MA
NUAL VOLUME DAMPER (MVD) OR AUTOMATIC CONTROL DAMPER (ACD) IN CT. PROVIDE OPPOSED BLADE TYPE WITH LOCKING QUADRANT REGULATOR. D SHALL BE A MOTORIZED, FULLY MODULATING DAMPER.	f	Automatic Air Vent With 1/4" Ball Valve. Route 1/4" Soft Copper Tubing	MAX MIN MVD
CTANCULAR TO ROUND TRANSITION.	.	FROM DISCHARGE TO FLOOR DRAIN UNLESS OTHERWISE NOTED.	NC
CTANGULAR BRANCH DUCT TAKE-OFF FROM RECTANGULAR MAIN DUCT. E-OFF SHALL BE MADE WITH A 45° COLLAR.	0	ELBOW TURN UP	NU
PPLY AND OUTSIDE AIR FLOW.	——Э	ELBOW TURN DOWN	OC
URN AND EXHAUST AIR FLOW.		CONNECTION, BOTTOM	RA
LING DIFFUSER 24"x24" SOLIARE CONF FACE ROUND NECK SIZE AND AIR		CONNECTION, TOP	RAC RAR
W AS INDICATED. DIRECTION OF THROW AS INDICATED BY ARROWS. TITUS DEL TMS OR APPROVED EQUIVALENT. SEE 'CEILING DIFFUSER DETAIL' ON SHEET 01.			REQD
URN AIR GRILLE. LOUVERED FACE, RECTANCULAR NECK SIZE AND AIR FLOW AS			SA
ICATED. TITUS MODEL 350FL OR APPROVED EQUIVALENT. PROVIDE WITH A x24" EXTENDED PANEL FOR INSTALLATION IN A LAY-IN CEILING CRID. PROVIDE JARE TO ROUND ADAPTER WHERE FLEX DUCT IS SHOWN.			SD SMACNA
EWALL REGISTER. RECTANGULAR NECK SIZE AND AIR FLOW AS INDICATED. ECTION OF THROW AS INDICATED BY ARROW. PROVIDE WITH OPPOSED BLADE LUME DAMPER OPERABLE FROM THE FACE OF THE REGISTER. TITUS MODEL DRS OR APPROVED EQUIVALENT.			SW SWG SWR
ACE TEMPERATURE SENSOR PROVIDED BY HVAC CONTROLS CONTRACTOR. UNT AT 48" A.F.F. SEE HVAC CONTROLS ON SHEETS M400 AND M401.			ta TD Temp
NNECTION OF NEW TO EXISTING			TU TYP
FLOW MEASURING STATION			VAV VFD
CT MOUNTED SMOKE DETECTOR. FURNISHED BY DIVISION 16, INSTALLED IN CT BY DIVISION 15, AND WIRED BY DIVISION 16			W/
ERNALLY LINED DUCT			40
NSFER GRILLE. LOUVERED FACE, RECTANCULAR NECK SIZE AS INDICATED. TITUS			

R APPROVED EQUIVALENT. PROVIDE WITH A 24"x24" EXTENDED LLATION IN A LAY-IN CEILING CRID. PROVIDE TITUS MODEL RCP OR APPROVED EQUIVALENT.

CENERAL NOTE THE CONTRACTOR SHALL VISIT THE SITE BEFORE SUBMISSION OF FINAL BID TO BECOME THOROUCHLY ACQUAINTED WITH THE ACTUAL EXISTING CONDITIONS AND CLEARANCES IN THE FIELD. THE EXISTING STRUCTURAL DESIGN AND ABOVE-CEILING CLEARANCES WERE DETERMINED THROUGH NON-DESTRUCTIVE SITE INVESTIGATION.

THIS IS AN OLD BUILDINC, WITH MANY ABANDONED AND ACTIVE UTILITIES ABOVE THE CEILINCS. ALTHOUCH EVERY EFFORT HAS BEEN MADE TO COORDINATE DUCT AND PIPE ROUTING WITH THE SPACE AVAILABLE, THE CONTRACTOR MAY NEED TO DETERMINE THE BEST ROUTING IN THE FIELD. ANY DEVIATION IN THE DUCT OR PIPE SIZING AND ANY MAJOR DEVIATION FROM ROUTING AS INDICATED IN THIS DRAWING SHALL BE BROUCHT TO THE ATTENTION OF THE ARCHITECT AND ENGINEER PRIOR TO THE FABRICATION OR INSTALLATION OF ANY DUCT OR PIPE IN QUESTION.

AUTOMATIC CONTROL DAMPER ABOVE FINISHED FLOOR AIR HANDLING UNIT AMERICAN SOCIETY OF HEATING, REFRICERATING, AND AIR- CONDITIONING ENCINEERS
Common (3-Way Control Valve) Ceiling Diffuser Cubic Feet Per Minute (Air Flow) Chilled Water Return Chilled Water Supply Continuous or Continued
DIRECT DIGITAL CONTROL DOWN DRAWINCS
EXHAUST AIR EXHAUST FAN EXHAUST CRILLE ENTERING EXTERNAL STATIC PRESSURE EXISTING
FIRE DAMPER FLAT OVAL FEET SQUARE FEET
CALVANIZED
HORSEPOWER HEATING WATER PUMP HEATING WATER RETURN HEATING WATER SUPPLY
INCHES - WATER COLUMN
LEAVINC
Mixed Air Maximum Minimum Manual Volume Damper
NORMALLY CLOSED NORMALLY OPEN
OUTSIDE AIR ON CENTER
Return Air Return Air Crille Return Air Register Required Room
SUPPLY AIR SMOKE DETECTOR (DUCT-MOUNTED) SHEET METAL AND AIR-CONDITIONINC CONTRACTORS' NATIONAL ASSOCIATION SWITCH SIDE-WALL CRILLE (SA) SIDE-WALL RECISTER (SA)
TRANSFER AIR TRIPLE-DUTY (VALVE) TEMPERATURE AIR TERMINAL UNIT (VAV BOX) TYPICAL
VARIABLE AIR FLOW VARIABLE FREQUENCY DRIVE
WITH WATER CAUCE

GENERAL NOTES

- VERIFY COLLAR SIZES ON ALL AIR TERMINALS, EQUIPMENT OUTLETS AND INLETS, TRANSITION DUCTWORK AS NECESSARY. EXTERNALLY INSULAT CONNECTIONS.
- FIELD VERIFY CLEAR SPACE AVAILABLE, ROUTING PATH, AND CONFLICTS WITH STRUCTURE AND THE WORK OF OTHER TRADES PRIOR TO FABRIC OFFSETS IN DUCTWORK AS REQUIRED, WHETHER SPECIFICALLY INDICATED ON DRAWINCS OR NOT. SUBMIT SHOP DRAWINCS ON DUCTWORK COMMENCING WORK. MAINTAIN CLEARANCE AROUND ALL LICHT FIXTURES AS REQUIRED TO REMOVE AND SERVICE FIXTURES. COORDINATE TRUSSES/STRUCTURE. PRESSURE TEST ALL NEW DUCTWORK FOR LEAKS. SEE SPECIFICATIONS.
- CONTRACTOR SHALL INSTALL ALL EQUIPMENT, PIPINC, AND DUCTWORK SUCH THAT MANUFACTURERS' RECOMMENDED CLEARANCES ARE MET I MOTORS, FANS, BELTS, FILTERS AND AIR INTAKES. CONDENSATE LINES SHALL BE CLEAR OF FILTER RACK ACCESS.
- 4. PROVIDE DUCT FLEX CONNECTIONS & VIBRATION ISOLATION FOR ALL EQUIPMENT WITH ROTATING ELEMENTS THAT IS NOT FACTORY-INTERNALL
- 5. WASTE VENT STACKS, EXHAUST FANS, ETC. SHALL BE A MINIMUM OF 10 FT. FROM OUTSIDE AIR INTAKES.
- 6. ALL AHU FILTERS SHALL BE OF A READILY AVAILABLE SIZE, OF DISPOSABLE TYPE, AND BE ACCESSIBLE WITHOUT THE USE OF SCREWS OR OTHER **REQUIRING TOOLS.**
- PROVIDE ACCESS PANELS IN HARD CEILINGS AS REQUIRED FOR MAINTENANCE AND ADJUSTMENT OF DAMPERS, VALVES, AND EQUIPMENT LOC
- 8. ALL BIRD AND INSECT SCREENS SHALL BE ANODIZED ALUMINUM.
- BECAUSE OF THE SMALL SCALE OF CONTRACT DOCUMENTS IT IS NOT POSSIBLE TO SHOW ALL OFFSETS, TRANSITIONS, ETC. THE CONTRACT DO DIACRAMATIC. THE CONTRACTOR SHALL PROVIDE SHOP DRAWINGS COORDINATED WITH THE STRUCTURE AND ARCHITECTURAL WORK FOR RI WORK
- 10. THIS PROJECT SHALL INCLUDE COMMISSIONING OF THE HVAC, CONTROLS, AND RELATED ELECTRICAL SYSTEMS. THE SERVICES OF THE COMMI PROVIDED UNDER SEPARATE CONTRACT. UNDER THIS CONTRACT, THE PRIME CONTRACTOR, SUBCONTRACTORS, AND EQUIPMENT MANUFACTI AND MATERIAL AS REQUIRED TO ASSIST AND PARTICIPATE IN THE COMMISSIONING PROCESS FOR THE SCOPE OF WORK AS DESCRIBED IN SECT SPECIFICATIONS.
- 11. ALL WORK SHALL COMPLY WITH 8TH EDITION (2023) FLORIDA BUILDING CODE
- 12. SEAL AND PROTECT ALL WORK IN PROCRESS DURING CONSTRUCTION SUCH AS DUCT AND PIPING TO PREVENT ACCUMULATION OF CONSTRUCTION DEBRIS.
- 13. WHERE EXISTING DEVICES OR SYSTEMS ARE SHOWN TO BE REMOVED, REMOVE ALL ASSOCIATED SUPPORTS AND COMPONENTS UNLESS NOTED TO REMAIN FOR REUSE.
- DDC CONTROLS MAY UTILIZE EXISTING CONDUIT AND DEVICES BOXES WHERE THE EXISTING LOCATION DOES NOT CONFLICT WITH NEW WORK.

DUCTWORK AND INSULATION NOTES

- ALL ROUND FLEXIBLE DUCT SHALL BE FLEXMASTER TYPE 8M OR ENCINEER APPROVED EQUAL. MAXIMUM LENGTH OF ANY FLEXIBLE DUCT RUNOUT SHALL BE 5'-0". WHERE LENCTH REQUIRED EXCEEDS 5'-0", INSTALL EXTERNALLY INSULATED ROUND SNAPLOCK DUCT FOR BALANCE OF DISTANCE TO SPIN-IN TAP AT MAIN DUCT TRUNK.
- 2. SEAL ALL DUCT PENETRATIONS OF WALLS AND FLOORS AIRTICHT, RECARDLESS OF WHETHER WALLS AND FLOORS ARE FIRE RATED OR NOT.
- EXCEPT AS INDICATED IN NOTE No. 2, ALL SUPPLY AIR DUCTWORK UPSTREAM OF AIR TERMINAL UNITS SHALL BE MEDIUM PRESSURE GALVANIZED ROUND OR FLAT OVAL SPIRAL SEAM AS INDICATED. MEDIUM PRESSURE DUCT SHALL BE SMACNA STATIC PRESSURE CLASS 6" W.C., SEAL CLASS A, EXTERNALLY INSULATED WITH 2" THICK DUCT WRAP WITH A MINIMUM INSTALLED R-VALUE OF 6.0. DUCT SIZES INDICATED ARE INSIDE CLEAR DIMENSIONS.
- PROVIDE DOUBLE-WALL ROUND OR FLAT OVAL SPIRAL SEAM DUCTWORK AT THE DISCHARCE OF EACH AIR HANDLING UNIT AND AS INDICATED. DOUBLE-WALL DUCT SHALL HAVE 2" THICK, 3 Ib DENSITY INSULATION SANDWICHED BETWEEN THE OUTER CALVANIZED SPIRAL WALL AND THE INNER PERFORATED WALL. UNLESS INDICATED OTHERWISE PROVIDE DOUBLE-WALL DUCT FOR THE FIRST FITTING AND THE FOLLOWING 40 FEET OF DUCT. IF THE FIRST FITTING IS A PLENUM OR A Y-FITTING, DOUBLE-WALL DUCT SHALL EXTEND 40 FEET IN ALL DIRECTIONS. DUCT SIZES INDICATED ARE INSIDE CLEAR DIMENSIONS. DOUBLE-WALL FITTINGS SHALL ALSO HAVE A PERFORATED INNER LINER.
- ALL SUPPLY AIR DUCTWORK DOWNSTREAM OF AIR TERMINAL UNITS SHALL BE LOW PRESSURE RECTANCULAR OR ROUND CALVANIZED AS INDICATED, SMACNA STATIC PRESSURE CLASS 2" W.C., SEAL CLASS B EXTERNALLY INSULATED WITH 2" THICK DUCT WRAP WITH A MINIMUM INSTALLED R-VALUE OF 6.0. DUCT SIZES INDICATED ARE INSIDE CLEAR DIMENSIONS.
- ALL OUTSIDE AND RETURN AIR DUCTWORK SHALL BE LOW PRESSURE RECTANCULAR GALVANIZED SMACNA PRESSURE CLASS 3" W.C., SEAL CLASS B. DUCTWORK THAT IS HIDDEN ABOVE CEILINCS SHALL BE EXTERNALLY INSULATED WITH 2" THICK DUCT WRAP WITH A MINIMUM INSTALLED R-VALUE OF 6.0. DUCTWORK THAT IS EXPOSED IN MECHANICAL ROOMS SHALL BE EXTERNALLY INSULATED WITH 2" THICK RICID INSULATION BOARD WITH A MINIMUM INSTALLED R-VALUE OF 6.0 AND A FIELD APPLIED JACKED SUITABLE FOR PAINTINC.
- 7. ALL TRANSFER DUCTS SHALL BE INTERNALLY INSULATED WITH 1" THICK ACOUSTICAL DUCT LINER. DUCT SIZES INDICATED ARE INSIDE CLEAR DIMENSIONS UNLESS NOTED OTHERWISE.
- STANDARD EXHAUST AIR DUCTWORK SHALL BE GALVANIZED LOW PRESSURE RECTANCULAR OR ROUND, SMACNA STATIC PRESSURE CLASS 1" W.C., SEAL CLASS A, INSULATION NOT REOUIRED.
- 9. AVOID ROUTING DUCTWORK AND LOCATING TU'S WITHIN 6" OF TOP OF LIGHT FIXTURES WHEREVER POSSIBLE. MAINTAIN CLEARANCE BETWEEN TU'S AND DUCT INSULATION TO TOP OF LICHTS. PROVIDE CLEARANCE ALL AROUND AIR TERMINAL UNITS AS REQUIRED FOR ROUTINE MAINTENANCE.
- 10. ALL DUCTWORK WALL PENETRATIONS SHALL BE SEALED AIR TICHT REGARDLESS WALL FIRE RATING STATUS.
- 11. ALL DUCTWORK PENETRATING FIRE RATED WALLS SHALL BE PROVIDED WITH A FIRE DAMPER AS REQUIRED BY CODE.
- 12. PROVIDE MVD'S AT ALL NEW TAKEOFFS FROM DUCTS WHETHER SPECIFICALLY SHOWN OR NOT.
- 13. PROVIDE DUCT ACCESS PANELS AT ALL AIR FLOW MEASURINGS STATIONS, SMOKE DETECTORS, AND MOTORIZED DAMPERS.
- 14. WHERE DUCTWORK IS REMOVED FROM A TRUNK LINE AND THE OPENING IS NOT TO BE REUSED OR ENLARGED, CLOSE THE DUCT TO MATCH EXISTING MATERIAL AND SEAL WITH MASTIC. INSULATE TO PER PROJECT SPECIFICATIONS FOR NEW DUCTWORK.

PIPING GENERAL NOTES

- BUTTERFLY VALVES INDICATED FOR FLOW BALANCING AND SHUT OFF SERVICE SHALL BE PROVIDED WITH INFINITE POSITION THROTTLING HANDLE AND MEMORY STOP. AFTER HYDRONIC TEST AND BALANCE HAS BEEN COMPLETED, THE CONTRACTOR SHALL POSITION THE MEMORY STOP AT THE FINAL BALANCE POINT OF EACH VALVE. PROVIDE STAMPED ALUMINUM TAG FOR EACH VALVE INDICATING "BALANCING VALVE - DO NOT REMOVE MEMORY STOP - RETURN TO BALANCE SETTING."
- 2. PROVIDE AIR CHAMBER AND AUTOMATIC AIR VENTS AT ALL HIGH POINTS IN SYSTEM, PIPE TO FLOOR DRAIN WITH COPPER TUBING. SEE "AUTOMATIC AIR VENT DETAIL" ON SHEET M300.
- BUTTERFLY VALVES FOR SHUT OFF SERVICE SHALL BE PROVIDED WITH STAMPED ALUMINUM TAC INDICATING "SERVICE VALVE."
- 4. ALL CONNECTIONS TO AIR VENTS AND PRESSURE CACES SHALL BE MADE WITH BRASS PIPING.
- 5. INSTALL PIPE HANCERS NEXT TO AND ON BOTH SIDES OF ALL EQUIPMENT.
- 6. SEAL ALL PIPE PENETRATIONS OF WALLS AND FLOORS AIR TIGHT RECARDLESS OF WHETHER WALLS OR FLOORS ARE FIRE RATED OR NOT.

TE TRANSITIONS AT EQUIPMENT	
Cating Ductwork. Provide Layout Prior to With Roof	
FOR ALL ACCESS PANELS,	
ly isolated.	
R MECHANICAL DEVICES	
CATED ABOVE CEILINC.	
CUMENTS ARE ESSENTIALLY EVIEW PRIOR TO COMMENCING	
ISSIONING AUTHORITY ARE URERS SHALL PROVIDE LABOR TION 15995 OF THE PROJECT	

		LEGE	ND	
AHU-2	AIR HANDLINC UNIT	— CHWS —	CHILLED WATER SUPPLY PIPING	ACD
<u>TU-2.1</u>	AIR TERMINAL UNIT. '2' IS THE AHU NUMBER, '1' IS THE EQUIPMENT NUMBER.	—CHWR—	CHILLED WATER RETURN PIPING	ah Ahu
HNVP-21	HEATING WATER PLIMP	—HWS—	HEATING WATER SUPPLY PIPING	ASHRAE
		—HWR—	HEATING WATER RETURN PIPING	
			DOMESTIC COLD WATER PIPING	C
\bowtie	RECIANGULAR SUPPLY OR OUISIDE AIR DUCTWORK IN SECTION.		DIRECTION OF WATER FLOW	CD CFM
	RECTANCULAR RETURN OR EXHAUST AIR DUCTWORK IN SECTION.		CATE VALVE	CHWR
10"x8"	Existing Equipment, duct, or piping to remain.	—	BALL VALVE	CONT
10"x8"	EXISTING EQUIPMENT, DUCT, OR PIPING TO BE REMOVED.	<u> </u>	BUTTERFLY VALVE	DDC
10 " x8"	RECTANGULAR DUCTWORK. FIRST DIMENSION INDICATES SIDE SHOWN. SIZES SHOWN ARE INSIDE CLEAR DIMENSIONS. SEE 'DUCTWORK AND INSULATION NOTES' ON THIS SHEET.		CHECK VALVE	DN DWCS
8"Ø	DOUBLE-WALL FACTORY INSULATED. SOUND ATTENUATING ROUND OR FLAT OVAL		2-WAY CONTROL VALVE	EA
10"x8" FO	SPIRAL SEAM DUCTWORK. SIZE INDICATED IS INSIDE CLEAR DIMENSION. SEE 'DUCTWORK AND INSULATION NOTES' ON THIS SHEET.	-\$	3-WAY CONTROL VALVE	EF EC
8'Ø	SINGLE-WALL ROUND OR FLAT OVAL SPIRAL SEAM DUCTWORK. SIZE INDICATED IS INSIDE CLEAR DIMENSION. SEE 'DUCTWORK AND INSULATION NOTES' ON THIS SHEET.	⊣⋛⊢−∅ि⊢	BUTTERFLY OR BALL VALVE WITH MEMORY STOP FOR FLOW BALANCING	ENI ESP EX
	SOUARE THROAT FI BOW IN RECTANCULAR DUCTWORK WITH DOUBLE WALL		PIPE FLANGE	FD
	TURNING VANES. PROVIDE FOR ALL RECTANGULAR DUCT LARGER THAN 12" IN THE TURNING DIMENSION.	—		FO FT
\Box	LONG RADIUS (RADIUS IS MINIMUM 1-1/2 TIMES THE TURNING DIMENSION) ELBOW. PROVIDE FOR ALL ROUND DUCT AND RECTANGULAR DUCT 12" OR SMALLER IN THE TURNING DIMENSION.	<u> </u>		FT ² Calv
8'Ø	FACTORY FABRICATED AND INSULATED SOUND ATTENUATING FLEXIBLE ROUND DUCT, SIZE SHOWN IS INSIDE CLEAR DIMENSION, MAXIMUM LENGTH IS 8 FEET.	Ц Р∕Т	TEMPERATURE TEST PLUG WITH EXTENDED NECK AND CAP	HP
	ROUND BRANCH TAKE-OFE FROM RECTANCULAR MAIN DUCT. BRANCH DUCT SHALL	- <u>k.</u> +-	STRAINER WITH BLOW DOWN CATE VALVE	HWP
₹₹	BE FLEXIBLE ROUND DUCT OR ROUND METAL SNAPLOCK DUCT AS INDICATED. ROUND DUCT CONNECTION SHALL BE MADE WITH A 45 DECREE SIDE TAKEOFF FITTING WITH A MANUAL VOLUME DAMPER.	A _k ,	END CONNECTION WITH CAP	HWS IN-H-O
FD	FIRE DAMPER IN DUCT PENETRATION OF FIRE RATED WALL PROVIDE ACCESS IN	<u> </u>	PRESSURE GAUCE WITH 1/4" BALL VALVE	
	DUCT IMMEDIATELY ADJACENT TO DAMPER. SEE 'VERTICAL FIRE DAMPER DETAIL' ON SHEET M302.		THERMOMETER WITH 1/4" BALL VALVE	LVG
	Manual Volume Damper (MVD) or automatic control damper (ACD) in Duct. Provide opposed blade type with locking quadrant reculator. ACD shall be a motorized, fully modulating damper.	ţ	AUTOMATIC AIR VENT WITH 1/4" BALL VALVE. ROUTE 1/4" SOFT COPPER TUBING FROM DISCHARGE TO FLOOR DRAIN	Max Min MVD
	RECTANCULAR TO ROUND TRANSITION.		UNLESS OTHERWISE NOTED.	NC
	RECTANGULAR BRANCH DUCT TAKE-OFF FROM RECTANGULAR MAIN DUCT.	0	ELBOW TURN UP	NO
H	TAKE-OFF SHALL BE MADE WITH A 45° COLLAR.		ELBOW TURN DOWN	OA OC
\rightarrow	SUPPLY AND OUTSIDE AIR FLOW.			
\rightarrow	RETURN AND EXHAUST AIR FLOW.			ra Rac
← 🔊 → ↓ 8'ø CD 300 CFM	CEILING DIFFUSER. 24"x24" SQUARE CONE FACE. ROUND NECK SIZE AND AIR FLOW AS INDICATED. DIRECTION OF THROW AS INDICATED BY ARROWS. TITUS MODEL TMS OR APPROVED EQUIVALENT. SEE 'CEILING DIFFUSER DETAIL' ON SHEET M301.		CONNECTION, TOP	rar Reqd Rm
 _ ← 20"x20" RAC 750 CFM	RETURN AIR GRILLE. EGG CRATE FACE WITH 1/2"x1/2"x1/2" ALUMINUM CORE. RECTANGULAR NECK SIZE AND AIR FLOW AS INDICATED. TITUS MODEL 50F OR APPROVED EQUIVALENT. PROVIDE WITH A 24"x24" EXTENDED PANEL FOR INSTALLATION IN A LAY-IN CEILING GRID.			SA SD SMACNA
	SIDEWALL REGISTER. RECTANGULAR NECK SIZE AND AIR FLOW AS INDICATED. DIRECTION OF THROW AS INDICATED BY ARROW. PROVIDE WITH OPPOSED BLADE VOLUME DAMPER OPERABLE FROM THE FACE OF THE RECISTER. TITUS MODEL 300RS OR APPROVED EQUIVALENT.			SW SWC SWR
D	SPACE TEMPERATURE SENSOR PROVIDED BY HVAC CONTROLS CONTRACTOR. MOUNT AT 48" A.F.F. SEE HVAC CONTROLS ON SHEETS M400 AND M401.			ia TD TEMP
\clubsuit	CONNECTION OF NEW TO EXISTING.			typ Tu
	AIRFLOW MEASURING STATION			VAV

DUCT MOUNTED SMOKE DETECTOR. FURNISHED BY DIVISION 16, INSTALLED IN DUCT BY DIVISION 15, AND WIRED BY DIVISION 16

INTERNALLY LINED DUCT

GENERAL NOTE

THE CONTRACTOR SHALL VISIT THE SITE BEFORE SUBMISSION OF FINAL BID TO BECOME THOROUGHLY ACQUAINTED WITH THE ACTUAL EXISTING CONDITIONS AND CLEARANCES IN THE FIELD. THE EXISTING STRUCTURAL DESIGN AND ABOVE-CEILING CLEARANCES WERE DETERMINED THROUGH NON-DESTRUCTIVE SITE INVESTIGATION.

THIS IS AN OLD BUILDING, WITH MANY ABANDONED AND ACTIVE UTILITIES ABOVE THE CEILINGS. ALTHOUGH EVERY EFFORT HAS BEEN MADE TO COORDINATE DUCT AND PIPE ROUTING WITH THE SPACE AVAILABLE, THE CONTRACTOR MAY NEED TO DETERMINE THE BEST ROUTING IN THE FIELD. ANY DEVIATION IN THE DUCT OR PIPE SIZING AND ANY MAJOR DEVIATION FROM ROUTING AS INDICATED IN THIS DRAWING SHALL BE BROUCHT TO THE ATTENTION OF THE ARCHITECT AND ENGINEER PRIOR TO THE FABRICATION OR INSTALLATION OF ANY DUCT OR PIPE IN QUESTION.

ACD

CHWS

HWS

Automatic control damper Above Finished Floor
AIR HANDLING UNIT AMERICAN SOCIETY OF HEATING, REFRIGERATING, AND AIR- CONDITIONING ENCINEERS
COMMON (3-WAY CONTROL VALVE) CEILING DIFFUSER CUBIC FEET PER MINUTE (AIR FLOW) CHILLED WATER RETURN CHILLED WATER SUPPLY CONTINUOUS OR CONTINUED
DIRECT DIGITAL CONTROL DOWN DRAWINGS
EXHAUST AIR EXHAUST FAN EXHAUST GRILLE ENTERING EXTERNAL STATIC PRESSURE EXISTING
FIRE DAMPER FLAT OVAL FEET SQUARE FEET
CALVANIZED
HORSEPOWER HEATING WATER PUMP HEATING WATER RETURN HEATING WATER SUPPLY
INCHES - WATER COLUMN
LEAVING
MIXED AIR MAXIMUM MINIMUM MANUAL VOLUME DAMPER
NORMALLY CLOSED NORMALLY OPEN
OUTSIDE AIR ON CENTER
RETURN AIR RETURN AIR CRILLE RETURN AIR RECISTER REQUIRED ROOM
SUPPLY AIR SMOKE DETECTOR (DUCT-MOUNTED) SHEET METAL AND AIR-CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION SWITCH SIDE-WALL CRILLE (SA) SIDE-WALL RECISTER (SA)
TRANSFER AIR TRIPLE-DUTY (VALVE) TEMPERATURE TYPICAL AIR TERMINAL UNIT (VAV BOX)
VARIABLE AIR FLOW VARIABLE FREQUENCY DRIVE
N //TT I
WATER CAUCE

WATFORD ENGINEERING

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

													OWNE	R FURNI	SHED AIR	R HA	ND	LIN	GU	NIT	SCH	IEDL	ILE											
						FAN DATA									CHILLED	WATER CO	OIL DATA									PREFILTE	R DATA				FINAL FILTE	R DATA		
	TVDE	WHEEL	AIR VOLUME	TOTAL	OUTSIDE	EXTERNAL STATIC	TOTAL STATIC		ELECTRIC	al data		COIL	MAX. FACE	TOTAL COOLING	SENSIBLE COOLING	ENTERI	ING I	LEAVING A				MAX. PR	ESS. DROPS	TYDE		MEDV	MAX. FACE	MAXIMUM AIR	TYDE		MED\/	MAX. FACE	MAXIMUM AIR	
IVIAKK	IIFE	TYPE	CONTROL	AIR	AIR	PRESSURE	PRESSURE	MAXIMUM	VOLTO	DUACE		AIR	VELOCITY	CAPACITY	CAPACITY	AIR TE	MP.	TEMP.			AIEK DAIA	WATER	AIR		THICK	WILKV	VELOCITY	PRESSURE DROP		THICK		VELOCITY	PRESSURE DROP	KEIVIAKNS
			(2)	(CFM)	(CFM)	(INCHES H ₂ O)	(INCHES H ₂ O)	POWER	VOLIS	PHASE	HEKIZ	(CFM)	(FPM)	(BTU/HR)	(BTU/HR)	°Fdb	°Fwbo	₽db₽₽	wb CP	M °FE	NT ºF LVC	(FT H ₂ O)	(IN H ₂ O)	(5)	· · · · · · · · · · · · · · · · · · ·	6	(FPM)	(IN H ₂ O) (7)	5		6	(FPM)	(IN H ₂ O) (7)	
AHU-1	HDT-VAV	PLENUM	VFD	12450	2435	2.0 3	3.9 (4	15 HP	208	3	60	12450	500	479800	336200	77.2	64.6 5	52.0 50	0.9 80) 44.	56.0	10.0	1.0	PLT	2"	8	550	0.66	PLT	4"	13	550	0.7	8 9 10 11
AHU-2	HDT-VAV	PLENUM	VFD	13200	2560	1.5 (3)	3.5 (4) 15 HP	208	3	60	12265	500	478600	343600	75.6	62.9	49.6 48	8.6 80) 44.	56.0	11.0	1.0	PLT	2"	8	550	0.66	PLT	4"	13	550	0.7	8 9 10 11 12

AIR HANDLING UNIT SCHEDULE NOTES

1) HDT - HORIZONTAL DRAW THROUGH

VAV - VARIABLE AIR VOLUME

(2) VFD - VARIABLE FREQUENCY DRIVE

(3) DOES NOT INCLUDE PRESSURE DROP THROUGH CASING, COILS,

Filters, or filter housing. 4 INCLUDES PRESSURE DROP THROUGH CASING, COILS, FILTERS,

AND FILTER HOUSING.

5)	PLT -	PLEATED
-	OPT	

CRT - CARTRIDCE

(6) MINIMUM EFFICIENCY REPORTING VALUE, IN ACCORDANCE WITH ASHRAE STANDARD 52.2.

(7) MID-LIFE RESISTANCE

(8) TRAP CONDENSATE PIPING AT UNIT AND ROUTE TO NEAREST FLOOR DRAIN. SEE 'NEGATIVE PRESSURE CONDENSATE DRAIN TRAP' DETAIL ON SHEET M301.

					AIR TE	RMINA	L UNIT S	CH	EDL	JLE							
	AIR	MAXIMUM	MINIMUM	ROUND	DIFFERENTIAL STATIC				HEA	TING WA	TER COIL	DATA					
MARK	TERMINAL	PRIMARY AIR	PRIMARY AIR	INLET	PRESSURE	HEATING AIR	TOTAL HEATING	AIR TEM	IP DATA	HEATI	NG WATE	R DATA	MAX. PRE	SS. DROPS	PIPINC	CONTROL	REMARKS
		(CFM)	(CFM)	SIZE	(INCHES H ₂ O)	flow (CFM)	(BTU/HR)	°F ENT	⁰F LVG	CPM	⁰F ENT	⁰F LVG	WATER (FT H ₂ O)	AIR (IN H ₂ O)	RUNOUT SIZE	VALVE	
TU-1.01	VAVRH	645	145	8"	0.33	310	11300	50.0	84.0	0.75	140	110	5.0	.15	1/2"	2-WAY	(4) 5) 6)
TU-1.02	VAVRH	645	145	8"	0.33	310	11300	50.0	84.0	0.75	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.03	VAVRH	150	45	5"	0.05	75	2700	50.0	84.0	0.2	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.04	VAVRH	1100	330	12"	0.25	430	15800	50.0	84.0	1.0	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.05	VAVRH	810	245	9"	0.28	265	9700	50.0	84.0	0.7	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.06	VAVRH	265	80	5"	0.14	100	3600	50.0	84.0	0.25	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.07	VAVRH	1100	330	12"	0.24	400	14800	50.0	84.0	1.0	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.08	VAVRH	1145	345	12"	0.26	520	19200	50.0	84.0	1.3	140	110	5.0	.15	3/4"	2-WAY	4 5 6
TU-1.09	VAVRH	1160	350	12"	0.27	610	22300	50.0	84.0	1.5	140	110	5.0	.15	3/4"	3-WAY	4 5 6
TU-1.10	VAVRH	150	45	4"	0.08	45	1700	50.0	84.0	0.1	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.11	VAVRH	950	350	9"	0.37	630	23100	50.0	84.0	1.5	140	110	5.0	.15	3/4"	2-WAY	4 5 6
TU-1.12	VAVRH	890	265	9"	0.33	265	9800	50.0	84.0	0.7	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.13	VAVRH	375	115	6"	0.31	125	4600	50.0	84.0	0.3	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.14	VAVRH	1260	380	12"	0.31	500	18200	50.0	84.0	1.2	140	110	5.0	.15	3/4"	2-WAY	4 5 6
TU-1.15	VAVRH	1035	310	10"	0.38	330	12100	50.0	84.0	0.8	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.16	VAVRH	1030	310	10"	0.38	310	11000	50.0	84.0	0.75	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-1.17	VAVRH	1270	380	12"	0.31	610	22300	50.0	84.0	1.5	140	110	5.0	.15	3/4"	3-WAY	4 5 6
TU-2.01	VAVRH	1185	355	12"	0.28	430	14100	53.7	84.0	0.9	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-2.02	VAVRH	765	230	9"	0.26	550	18000	53.7	84.0	1.2	140	110	5.0	.15	3/4"	2-WAY	4 5 6
TU-2.03	VAVRH	1075	320	12"	0.23	530	17300	53.7	84.0	1.2	140	110	5.0	.15	3/4"	2-WAY	4 5 6
TU-2.04	VAVRH	655	195	8"	0.34	240	7800	53.7	84.0	0.5	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-2.05	VAVRH	1085	325	12"	0.24	690	22500	53.7	84.0	1.5	140	110	5.0	.15	3/4"	3-WAY	4 5 6
TU-2.06	VAVRH	1805	540	14"	0.31	1300	42400	53.7	84.0	2.8	140	110	5.0	.15	3/4"	3-WAY	4 5 6
TU-2.07	VAVRH	1780	520	14"	0.29	1345	43900	53.7	84.0	2.9	140	110	5.0	.15	3/4"	2-WAY	4 5 6
TU-2.08	VAVRH	1125	340	12"	0.25	340	9200	53.7	84.0	0.6	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-2.09	VAVRH	1730	520	14'	0.29	520	14900	53.7	84.0	1.0	140	110	5.0	.15	1/2"	2-WAY	4 5 6
TU-2.10	VAVRH	2080	780	14"	0.41	1780	58200	53.7	84.0	3.9	140	110	5.0	.15	3/4"	2-WAY	4 5 6

AIR TERMINAL UNIT SCHEDULE NOTES

1) VAVRH - VARIABLE AIR VOLUME WITH HEATING WATER REHEAT.

(2) ROUND INLET DUCT CONNECTION SHALL NOT BE LARGER THAN SIZE INDICATED.

3 MAXIMUM INTERNAL RESISTANCE OF AIR TERMINAL UNIT (INLET-TO-DISCHARCE STATIC PRESSURE DIFFERENTIAL) WITH PRIMARY AIR DAMPER FULL OPEN AT MAXIMUM PRIMARY (6) SEE 'COIL CONNECTION SCHEMATIC' ON SHEET M300, 'TERMINAL UNIT MOUNTING AIR FLOW INDICATED. INCLUDES PRESSURE DROP ACROSS THE HEATING WATER COIL.

(4) ACOUSTIC PERFORMANCE SHALL NOT EXCEED PUBLISHED CATALOG SOUND DA

5 PROVIDE EACH UNIT WITH A 120V CONTROLS TRANSFORMER TO SUPPLY 24 VOLT POWER TO THE DAMPER ACTUATOR AND CONTROLS.

DETAIL' ON SHEET M301, AND SEQUENCE OF OPERATION ON SHEET M401.

ENTITY NOT RKED ON ANY IGHT 2020 used withou Ship with the Dif or in part CONFIDENTIAL AND SHALL NOT E VING A CONTRACTUAL RELATIO REPRODUCTIONS HEREOF IN W

(9) PROVIDE AIR HANDLING UNIT WITH FACTORY-MOUNTED ELECTRICAL DISCONNECT.

(10) PROVIDE ULTRAVOILET CERMICIDAL IRRDIATION SYSTEM (UVCI LIGHTING) IN AHU FOR COOLING COIL.

(11) SEE SEQUENCE OF OPERATION ON SHEET M400.

(12) AIR HANDLINC UNIT MUST BE ABLE TO BE BROKEN DOWN TO PASS THROUGH A 36" NOMINAL DOOR OPENING.

ata.	

						FAN S	CHED	ULE			
UNIT	TYPE	CFM	MAX. FAN RPM	ESP (IN. H2O)	MAX. MOTOR POWER	SONES/db (MAX.)	BASIS OF DESIGN	MODEL	CONTROL	ELECTRICAL VOLTS/PHASE	NOTES
EF-2.1	INLINE	840	883	0.40	1/3 HP	3.5	COOK	GN-822	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,3,4,5,6,7
EF-2.2	INLINE	100	1411	0.25	1/25 HP	1.3	COOK	GN-242	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,2,3,4,5,7
EF-2.3	INLINE	870	871	0.20	1/3 HP	3.5	COOK	GN-822	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,3,4,5,6,7
EF-2.4	INLINE	200	1571	0.20	1/16 HP	3.5	COOK	GN-322	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,2,3,4,5,7
EF-2.5	INLINE	1705	941	0.25	1/2 HP	4.5	COOK	CN-1000	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,3,4,5,6,7

. PROVIDE DISCONNECT

2. PROVIDE SOLID STATE SPEED CONTROLLER. 3. PROVIDE BACK DRAFT DAMPER

4. PROVIDE THERMAL OVERLOAD

5. PROVIDE DIRECT DRIVE FAN

6. PROVIDE ECM FAN WITH SPEED CONTROLLER 7. PROVIDE VIBRATION ISOLATION HANCERS.

	AIR	R PU	RIFI	CATIO	ON EQ	UIPMI	ENT SCH	IED	ULE	
ZONE	SUPPLY	OA	PRESS.	BASIS OF	MODEL	QUANTITY	ELECTRICAL		NOTES	
	CFM	CFM	IN. W.C.	DESIGN			VOLTS/PHASE	WATTS		
AHU-1	12450	2435	<0.01	CPS	CPS-IMOD	1	120/1	7.8	1,2,3,4	
AHU-2	13200	2560	<0.01	GPS	GPS-IMOD	1	120/1	7.8	1,2,3,4	

PROVIDE PRODUCT BY BASIS OF DESIGN, GLOBAL PLASMA SOLUTIONS, NU-CALGON, OR LISTED IN SPECIFICATIONS. PROVIDE BASIS OF DESIGN OR EQUAL LISTED IN SPECIFICATIONS.

BI-POLAR IONIZATION SYSTEMS REQUIRING PERISHABLE CLASS TUBES ARE NOT ACCEPTABLE.

	MINI SPLIT SYSTEM CONDENSING UNIT SCHEDULE											
UNIT MSHP	BASIS OF DESIGN	MODEL	NOMINAL COOL CAPACITY (BTUH)	DESIGN COOLING OUTDOOR TEMP DB	SEER	NOMINAL HEAT CAPACITY (BTUH)	DESICN HEATINC OUTDOOR TEMP DB	HSPF	VOLTS/PHASE	MCA (AMPS)	MOP (AMPS)	NOTES
1	MITSUBISHI	PUZ-A12NKA7	12000	93/78	21.0	14000	25	10.2	208/1	11.0	28	1,2,3
2	MITSUBISHI	PUZ-A12NKA7	12000	93/78	21.0	14000	25	10.2	208/1	11.0	28	1,2,3
3	MITSUBISHI	PUZ-A12NKA7	12000	93/78	21.0	14000	25	10.2	208/1	11.0	28	1,2,3

NOMINAL COOLING CAPACITIES ARE BASED ON INDOOR COIL EAT OF 80/67°F (DB/WB), OUTDOOR OF 95°F (DB) NOMINAL HEATING CAPACITIES ARE BASED ON INDOOR COIL EAT OF 70°F (DB), OUTDOOR OF 47°(DB)

EFFICIENCY VALUES FOR EER, IEER, AND COP ARE BASED ON AHRI CONDITIONS

	MINI SPLIT SYSTEM AIR HANDLING UNIT SCHEDULE												
UNIT	BASIS OF DESIGN	MODEL	TYPE	NOMINAL COOL CAPACITY (BTUH)	RATED COOLING EAT °F DB/WB	RATED COOLING COOLING TOTAL	CAPACITY (BTUH) COOLING SENSIBLE	NOMINAL HEAT CAPACITY (BTUH)	RATED HEATINC EAT °F DB	RATED HEATING TOTAL CAPACITY (BTUH)	AIRFLOW (CFM)	NOTES	
WM-1	MITSUBISHI	PKA-A12LA	WALL MOUNT	12000	80/67	12000	10560	14000	70	18000	375	1,2,3,4,5	
WM-2	MITSUBISHI	PKA-A12LA	WALL MOUNT	12000	80/67	12000	10560	14000	70	18000	375	1,2,3,4,5	
WM-3	MITSUBISHI	PKA-A12LA	WALL MOUNT	12000	80/67	12000	10560	14000	70	18000	375	1,2,3,4,5	

NOMINAL COOLING CAPACITIES ARE BASED ON INDOOR COIL EAT OF 80/67°F (DB/WB), OUTDOOR OF 95°F (DB) 5. POWERED FROM OUTDOOR UNIT NOMINAL HEATING CAPACITIES ARE BASED ON INDOOR COIL EAT OF 70°F (DB), OUTDOOR OF 47°(DB)

3. PROVIDE HARD WIRED REMOTE THERMOSTAT

4. PROVIDE CONDENSATE PUMP

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

4. MANUFACTURER MUST PASS UL-867-2007 OZONE CHAMBER TESTING BY EITHER UL OR ETL

2022-101	DCUMENTS	01 01 0001
	RUCTION DC	
	CONSTE	

	FAN SCHEDULE											
UNIT	TYPE	CFM	MAX. FAN	ESP	MAX. MOTOR	SONES/db	BASIS OF	MODEL	CONTROL	ELECTRICAL	NOTES	
			RPM	(IN. H2O)	POWER	(MAX.)	DESIGN			VOLTS/PHASE		
EF-1	CREF	100	1138	0.20	1/20 HP	2.5	COOK	70C15DH	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,2,3,4,5,6,7	
EF-2	CREF	290	1068	0.25	1/25 HP	6.5	COOK	100C10DM	DEDICATED WALL SWITCH BY DIVISION 16	115/1	1,2,3,4,5,6,7	
EF-3	CREF	150	1304	0.20	1/20 HP	3.7	COOK	70C15DH	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,2,3,4,5,6,7	
EF-4	CREF	1120	557	0.20	1/8 HP	3.1	COOK	165C17D	CONTINUOUSLY DURING LAB MODE BY DDC	115/1	1,3,4,5,6,7,9	
EF-5	CREF	1285	600	0.20	1/8 HP	3.8	COOK	165C17D	CONTINUOUSLY DURING LAB MODE BY DDC	115/1	1,3,4,5,6,7,9	
EF-6	CREF	170	1548	0.30	1/20 HP	5.1	COOK	70C15DH	WALL MOUNTED TIME SWITCH	115/1	1,2,3,4,5,6,7,10	
EF-7	CREF	170	1548	0.30	1/20 HP	5.1	COOK	70C15DH	WALL MOUNTED TIME SWITCH	115/1	1,2,3,4,5,6,7,10	
EF-8	CREF	170	1548	0.30	1 /20 HP	5.1	СООК	70C15DH	WALL MOUNTED TIME SWITCH	115/1	1,2,3,4,5,6,7,10	
EF-9	CREF	170	1548	0.30	1 /20 HP	5.1	COOK	70C15DH	WALL MOUNTED TIME SWITCH	115/1	1,2,3,4,5,6,7,10	
EF-10	CREF	170	1548	0.30	1/20 HP	5.1	COOK	70C15DH	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,2,3,4,5,6,7	
EF-11	CREF	285	1036	0.30	1/25 HP	4.2	COOK	101C10D	CONTINUOUSLY DURING OCCUPANCY BY DDC	115/1	1,2,3,4,5,6,7	
EF-12	CREF	1230	602	0.20	1/3 HP	3.8	COOK	165C10D	CONTINUOUSLY DURING LAB MODE BY DDC	115/1	1,3,4,5,6,7,9	

PROVIDE DISCONNECT

PROVIDE SOLID STATE SPEED CONTROLLER. PROVIDE BACK DRAFT DAMPER

PROVIDE THERMAL OVERLOAD

PROVIDE DIRECT DRIVE FAN

PROVIDE CURB AS REQUIRED TO MOUNT TO EXISTING CURB

PROVIDE FAN WITH FLORIDA PRODUCT APPROVAL PROVIDE WHITE FINISH ALUMINUM CRILLE

PROVIDE ECM FAN WITH SPEED CONTROLLER

10. PROVIDE ELECTRONIC COUNTDOWN TIMER WITHOUT HOLD BY INTERMATIC OR EQUAL. MATCH FINISH OF EXISTING WALL DEVICES.

11. PROVIDE SIDE DISCHARGE. 12. PROVIDE VIBRATION ISOLATION HANCERS.

	AIR PURIFICATION EQUIPMENT SCHEDULE										
ZONE	SUPPLY	OA	PRESS.	BASIS OF	MODEL	QUANTITY	ELECTRICAL		NOTES		
	CFM	CFM	IN. W.C.	DESIGN			VOLTS/PHASE	WATTS			
AHU-1	1 2705	1485	<0.01	CPS	GPS-IMOD	1	120/1	7.8	1,2,3,4		
AHU-2	3100	215	<0.01	CPS	CPS-IMOD	1	120/1	7.8	1,2,3,4		

PROVIDE PRODUCT BY BASIS OF DESIGN, GLOBAL PLASMA SOLUTIONS, NU-CALCON, OR AS LISTED IN SPECIFICATIONS.

PROVIDE BASIS OF DESIGN OR EQUAL LISTED IN SPECIFICATIONS. BI-POLAR IONIZATION SYSTEMS REQUIRING PERISHABLE CLASS TUBES ARE NOT ACCEPTABLE.

MANUFACTURER MUST PASS UL-867-2007 OZONE CHAMBER TESTING BY EITHER UL OR ETL.

					E	AN DATA										C	CHILLED	WATER	COIL D	ATA										н	IEATING	WATER	COIL D	ATA			FILT	FILTER SECTION		
UNIT	TYPE	FAN		MAX.	MIN.	OUTSIDE AIR	APPROX.	TOTAL	MAXIMUN		X. UNIT CE TOTAL	UNIT	F DESIG	N	AIF	R SIDE						WATER	SIDE			MAX. V FACE	UNI TOTA	L	AIR SID	E				WA	ER SIDE			FILTER		4
DESIG- NATION		ITPE	CONTROL	AIR FLOW (CFM)	AIR FLOW (CFM)	FLOW (CFM)	ESP (IN. W.C.)	SP (IN. W.G.)	MOTOR	R RPM (F	CITY CAPACIT	CAPACIT (MBH)	Y AIRFLO (CFM	W) (°F) DE	EAT B (°F) WE	B (°F) D	LAT B (°F) W	FLC B (CF	OW E PM) (WT Ľ 'F) (₩Т м. °F)	IAX. WPD (FT H2O)	CONTROL VALVE (BY DDC CONTRACTOR)	CONTROL VALVE PRESSURE DROP	(CFM)	VELOCITY (FPM)	CAPACI	TY 1) (°	eat F) db	LAT (°F) DB	FLOW (CPM)	/ EWT) (°F)	LW1 (°F)	MAX. W (FT H2O)	D CONTROL VALVE (BY DDC CONTRACTOR)	CONTROL VALVE PRESSURE DROP	TYPE	EFF. (MER\	/) (IN)	S NOTES
AHU-1	VDT	DDPF	VAV	12705	3850	1485/5150	2.0	3.9	15	1800 5	00 636.8	389.4	12570	80.2	67.9	51.5	50.7	8	60 4	4.0 <i>E</i>	50	5.0	2-WAY	11.5 FT	9215	500	209.	0 4	14.0	65.0	14	140	110	5.0	2-WAY	11.5 FT	CARTRIDG	E 13	4	1,2,3,4,5,7,8,9,10
AHU-2	VDT	DDPF	VAV	3100	925	215	1.5	2.3	3	1800 5	87.9	73.5	3070) 73.4	60.7	51.2	. 50.1	1	1 4	4.0 6	50	5.0	2-WAY	11.5 FT							NO	HEATING					CARTRIDG	E 13	4	1,2,3,4,5,7,8,10
SCHE	DULE LEGEND: HORIZONTAL I	DRAW THRU		SCI 1.	Hedule Notes: Esp does No	ot include press	SURE DROP	5.	2" THICKNESS MERV SPECIFIED FINAL FIL VARIABLE FREQUEN	8 PRE FILTERS ANI TERS. CY DRIVE WITH INT	GRAL																													

6. VARIABLE FREQUENCY DRIVE WITH INTEGRAL

THROUGH AHU CASING OR COILS.

THROUCH CASINC, COILS, AND MID LIFE

EFFICIENCY BASED ON ASHRAE 52-76.

4. BASIS OF DESICN: TRANE CSAA AIR HANDLINC

2. TOTAL SP INCLUDES PRESSURE DROP

3. AVERACE ATMOSPHERIC DUST SPOT

FILTER PRESSURE DROP

DISCONNECT FOR FAN MOTOR PROVIDED BY DDC CONTRACTOR 208V/3 PHASE

MAX FACE VELOCITY FOR CHILLED WATER 8

COIL IN REFERENCE TO MAX AIRFLOW

9. HEATING COIL IN PREHEAT POSITION 10. PROVIDE UV LICHTS WITH DOOR

INTERLOCKING DISCONNECT

USED WITHOUT USED WITHOUT SHIP WITH THE I DLE OR IN PART. PROPRIETARY RIGHT CLAUSE CONFIDENTIAL AND SHALL NOT B AVING A CONTRACTUAL RELATION REPRODUCTIONS HEREOF IN WH

SDU - STACKED DEHUMIDIFICATION UNIT

SZVAV - VARIABLE AIR VOLUME, SINCLE ZONE

VAV - VARIABLE AIR VOLUME, MULTIPLE ZONES

DDPF - DIRECT DRIVE PLENUM FAN

FC - FORWARD CURVED

BC - BACKWARD CURVED

CV - CONSTANT VOLUME

/ ENTITY NOT ARKED ON ANY RIGHT 2020

1															TC					
				VAK	KIA Ł	SLE)Ll	JMI		EK	MINAL		15	CHE	DUL	E		
MARK	TOTAL	COOL	HEATING				HE	ATING (COIL		1				SOU	ND POWE	R AT 1.0"	INLET	MANUFACTURER	MODEL
	CFM	MIN.	MAX.	EAT (°F)	LAT (°F)	MBH	EWT (°F)	LWT (°F)	CPM	NUM. OF ROWS	MAX. UNIT APD (IN.)	MAX. WPD (FT.)	Control Valve Type	CONTROL VALVE PRESSURE	REF.	RADIATED	DISCHARCE	JIZE		NUMBER
TU-1.01	670	200	525	65.0	95.0	17.7	140	123.1	2.1	2	0.20	5.0	2-WAY	11.5 FT	670	17	17	9	TITUS	DESV
TU-1.02	1410	425	1410	65.0	95.0	31.0	140	124.1	3.9	2	0.38	5.0	2-WAY	11.5 FT	1410	22	20	12	TITUS	DESV
TU-1 03	145	45	45	65.0	95.0	0.8	140	110	01	2	0.15	5.0	3-WAY	115 FT	145	21	22	4	TITUS	DESV
TIL1 04	140	45	45	65.0	95.0	1.4	140	110	0.1	2	0.15	5.0	3.WAY	11.5 FT	140	20	20	4	TITUS	DESV
TIL1 05	150	45	45	67.0	95.0	0.8	140	110	0.1	2	0.15	5.0	2.1/44	115 FT	150	20	20	4	TITUS	DESV
TIL1 06	565	170	170	67.0	91.0	4.9	140	110	0.1	2	0.17	5.0	2.11/47	11.5 FT	565	19	18	-т - Я	TITUS	DESV
TU-1.07	475	145	145	67.0	87.0	т.7 35	140	110	0.7	2	0.20	5.0	2.WAY	11.5 FT	475	20	16	7	TITUS	DESV
	130	45	147	67.0	07.0	1.2	140	110	0.2	2	0.20	5.0		11.7 FT	130	1.8	20	/	TITUS	
	755	47	47	67.0	90.0	1.0	140	114.7	0.1	2	0.17	7.0			755	10	15	7	TITUS	
10-1.09	1100	770	420	67.0	97.0	17.0	140	114.7	0.9	2	0.27	7.0	7-WAT	11.7 FI	1100	10	17	9	TITUS	DESV
	100	770	077	67.0	97.0	20.7	140	112	1.4	2	0.24	7.0	Z-WA1	11.7 FI	1100	19	10	12	TITUS	DESV
	1200	325	1030	67.0	82.0	18.9	140	110	1.2	2	0.28	5.0	3-WAY	11.5 FI	1200	20	18	12	IIIUS	DESV
10-1.12	1650	495	1650	65.0	87.0	39.3	140	110	2.6	2	0.27	5.0	2-WAY	11.5 FI	1650	20	15	14	IIIUS	DESV
TU-1.13	690	230	690	65.0	89.0	18.1	140	115.9	1.5	2	0.21	5.0	2-WAY	11.5 FT	690	18	18	9	TITUS	DESV
TU-1.14	2420	730	1365	65.0	90.0	37.6	140	113.2	2.8	2	0.53	5.0	2-WAY	11.5 FT	2420	23	18	14	TITUS	DESV
TU-1.15	1510	455	1015	65.0	93.0	30.9	140	111.9	2.2	2	0.23	5.0	2-WAY	11.5 FT	1510	20	14	14	TITUS	DESV
TU-2.01	460	170	315	61.1	91.0	10.3	140	114.3	0.8	2	0.24	5.0	2-WAY	11.5 FT	455	20	16	7	TITUS	DESV
TU-2.02	230	70	125	61.1	94.0	4.4	140	110	0.3	2	0.15	5.0	2-WAY	11.5 FT	230	20	20	5	TITUS	DESV
TU-2.03	170	50	50	61.1	95.0	1.9	140	110	0.2	2	0.15	5.0	2-WAY	11.5 FT	170	24	23	4	TITUS	DESV
TU-2.04	300	90	90	61.1	93.0	2.7	140	110	0.2	2	0.18	5.0	2-WAY	11.5 FT	300	24	19	5	TITUS	DESV
TU-2.05	490	150	150	61.1	88.0	2.6	140	110	0.2	2	0.28	5.0	2-WAY	11.5 FT	490	22	17	7	TITUS	DESV
TU-2.06	660	200	285	61.1	92.0	9.4	140	113	0.7	2	0.34	5.0	3-WAY	11.5 FT	660	22	20	8	TITUS	DESV
TU-2.07	230	70	125	61.1	94.0	4.4	140	110	0.3	2	0.15	5.0	3-WAY	11.5 FT	230	20	20	5	TITUS	DESV
TU-2.08	240	70	110	61.1	95.0	4.1	140	110	0.3	2	0.15	5.0	3-WAY	11.5 FT	240	21	20	5	TITUS	DESV
TU-2.09	200	50	75	61.1	95.0	2.7	140	110	0.2	2	0.15	5.0	2-WAY	11.5 FT	200	24	23	4	TITUS	DESV
TU-2.10	130	45	45	61.1	95.0	1.5	140	110	0.1	2	0.15	5.0	2-WAY	11.5 FT	130	18	20	4	TITUS	DESV
TERMINAL UN	IT SCHEDULI	E NOTES:									1									

1. ALL VAV TERMINAL UNITS SHALL BE PRESSURE INDEPENDENT.

2. PROVIDE ALL VAV TERMINAL UNITS WITH ACCESS PANEL WITH TOOL/LESS CAM LOCK ENTRY TO ALLOW 5. SERVICING OF AIR VALVE WITHOUT DISCONNECTING DUCT WORK.

3. PROVIDE ALL VAV TERMINAL UNITS WITH FOIL FACED INSULATION.

OWNER FURNISHED AIR HANDLING UNIT SCHEDULE

4. SOUND DATA FOR DISCHARGE NC BASED ON 10 dB ROOM ABSORPTION, 5' UNLINED DUCT (12'x12'), 5' LINED FLEX DUCT (8") TO DIFFUSER, AND MAX 300 CFM PER DIFFUSER.

SOUND DATA FOR RADIATED NC BASED ON 10 dB ROOM ABSORPTION, 3' DEEP CEILING CAVITY, AND 5/8" THICK, 20 LB/CU. FT. FIBER CEILING TILE.

6. PROVIDE VAV TERMINAL UNITS WITH FACTORY MULTIPOINT FLOW SENSOR.

PROVIDE FACTORY MOUNTED 120V CONTROLS TRANSFORMER TO SUPPLY 24 VOLT POWER TO DAMPER ACTUATOR AND CONTROLS.

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

RENOVATION 3240 in HV ADL ADL HV Bay District Scho RUTHERFOF HIGH SCHO BUILDING 1 1000 School Ave., Panama City, Florid Date No. Description

2022-101
05-24-2024

HVAC SCHEDULES

DRAWN BY:

DESIGNED BY:

SLD/DNW

SLD/DNW

Í

 \square

Flori

hool ⊿ City,

1000 Sch Panama

Date

 \overline{O}

 $O \sim$

ŢŢ

O

Ш

 \mathbf{C}

Ś

Ū

0	CLASSROUM	
A00	TEACHER PLANNING/STORAGE	
)1	CLASSROOM	
)1A	STORAGE	
)2	CUSTODIAL	
)3	CLASSROOM	
)3A	STORAGE	
)4	CLASSROOM	
)5	CLASSROOM	
)5A	STORAGE	
)6	COMMUNICATIONS/SECURITY	
)7	COMMUNICATIONS	
8	CLASSROOM	
)9	CLASSROOM	

BURUBU No. Description PROJECT NUMBER: DATE: DRAWN BY DESIGNED BY:

2022-042 05-24-2024 SLD/DNW SLD/DNW

HVAC EQUIPMENT AND DUCTWORK **NEW WORK** 1st FLOOR

SHEET NOTES

- (1) CONNECT SUPPLY AND RETURN FROM AHU-1 TO EXISTING DUCTWORK IN
- (2) INSTALL NEW AIR HANDLING UNIT ON EXTENDED HOUSEKEEPING PAD SO THAT CHILLED WATER COIL CAN BE REMOVED THROUGH EXTERIOR DOORS.
- 3 PROVIDE NEW PLENUM SAME SIZE AS EXISTING OUTSIDE AIR LOUVER AND APPROXIMATELY 12" DEEP. CONNECT NEW OA DUCT TO BACK OF PLENUM AS
- A PROVIDE 16"X48" INTAKE HOOD, COOK MODEL CI DUCTED OR EQUAL PROVIDE CURB AND PANEL BY METAL ROOF MANUFACTURER. REFER TO STRUCTURAL DRAWING S-1 FOR CONCRETE TEE PENETRATIONS.
- 5 ROUTE SUPPLY AIR DUCT FULL-SIZE TO AHU AND TRANSITION SMOOTHLY AT UNIT OPENING. OFFSET AND TRANSITION AS NECESSARY FOR CONNECTION.
- 6 ROUTE 43"x12" RETURN AIR DUCT UP TO BOTTOM OF 32"x16" DUCT.
- (7) ROUTE 60"x24" RETURN AIR DUCT UP TO BOTTOM OF 38"x34" DUCT.
- (9) CONCRETE HOUSEKEEPING PAD EXTENSION SAME HEIGHT AS EXISTING (APPROXIMATELY 3-1/2" TALL). NEW PAD EXTENSION SHALL BE 4000 psi. REINFORCED WITH #4 REBAR @ 8" O.C. EACH WAY. PROVIDE 2" COVER OVER REINFORCEMENT. PAD SHALL MATCH EXISTING WIDTH DIMENSION AND BE
- ROUTE DUCT UP THROUGH ORIGINAL BUILDING ROOF AND BELOW RETROFIT METAL ROOF AS SHOWN. REFER TO STRUCTURAL DRAWING S-1 FOR

WATFORD ENGINEERING

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

00	MEDIA CENTER	209	LAR
00A	CORRIDOR	210	DAR
01	ENTRY VESTIBULE	211	CLA
02	PERIODICALS	212	CLA
03	AUDIO VIDEO STORAGE	213A	CLA
03A	CER	213B	CLA
04	CUSTODIAN	214	RES
05	OFFICE	215	RES
06	MEDIA PRODUCTION	218	WOF
07	CONFERENCE	223	ELE
08	SMALL GROUP PROJECTS		

ORRIDOR	210
NTRY VESTIBULE	211
ERIODICALS	212
UDIO VIDEO STORAGE	213
ER	213
USTODIAN	214
FFICE	215
IEDIA PRODUCTION	218
ONFERENCE	223

9	LARGE GROUP PROJE
0	DARK ROOM
1	CLASSROOM
2	CLASSROOM
3A	CLASSROOM
3B	CLASSROOM
4	REST ROOM
5	REST ROOM
8	WORK ROOM
3	ELECTRICAL CLOSET

05-24-2024	2022-101 CONSTRUCTION DOCUMENTS 05-24-2024
AUTOMATIC AIR	
BRASS PIPI	
4	
	-
CHILLED OR HOT	
1 AUTON M300 SCALE: NON	S DRAWING IS BY ANY ENTITY NOT BE MARKED ON ANY COPYRIGHT 2020
RETURN -O DIRECTION OF AIR FLOW	ROPRIETARY RIGHT CLAUSE: INFORMATION AND DATA CONTAINED ON THI DENTIAL AND SHALL NOT BE USED WITHOUT PRIOR WRITTEN PERMISSION B A CONTRACTUAL RELATIONSHIP WITH THE ENGINEER. THIS LEGEND SHALL ODUCTIONS HEREOF IN WHOLE OR IN PART.: WATFORD ENGINEERING, INC.
	P CONFI
CENERAL NOTES: 1) SUPPLY AND RETURN RUNOUT PIPING FROM TEE A TYPE L COPPER. 2) AUTOMATIC FLOW CONTROL VALVES SHALL BE FLO	-
 2) AUTOMATIC FLOW CONTROL VALVES SHALL BE FLO ENDS, Y-PATTERN, LINE SIZE, WITH TWO FACTORY 3) INSTALL COIL COMPONENTS IN THE PHYSICAL REL AND TO EACH OTHER. 4) INSTALL 3-WAY CONTROL VALVE WITH ACTUATOR I 5) INSTALL P/T PORTS IN REDUCING TEE. HALF COUP 6) APPANCE PIPING SUCH THAT THE ENTIDE COULCO 	
 4) INSTALL 3-WAY CONTROL VALVE WITH ACTUATOR I 5) INSTALL P/T PORTS IN REDUCING TEE. HALF COUP 6) ARRANCE PIPING SUCH THAT THE ENTIRE COIL CO DISCONNECTING AT POINTS MARKED WITH AN AST NOT INTERFERE WITH ACCESS TO ANY COMPONEN SERVICE. 	

MATIC AIR VENT DETAIL

- T AUTO AIR VENT TO COIL SHALL BE HARD DRAWN
- DW DESIGN AUTO FLOW SERIES YR, SCREWED P/T PORTS. RANCE 2-32 PSID.

ATIONSHIP INDICATED WITH RESPECT TO THE COIL,

- N VERTICAL POSITION.
- LINCS ARE NOT ALLOWABLE.
- NNECTION ASSEMBLY CAN BE REMOVED BY ERISK (*) FOR COIL SERVICING. PIPING SHALL NT OF THE AIR HANDLING UNIT THAT REQUIRES

CONNECTION SCHEMATIC

PIPE SIZE 2" AND SMALLER - THREE WAY CONTROL VALVE

GENERAL NOTES:

- 1) PROVIDE PRESSURE INDEPENDENT ELECTRIC CONTROL VALVES WITH CONSTANT DIFFERENTIAL PRESSURE FOR 100% VALVE AUTHORITY, OPERATING RANGE 4-60 PSI.
- 2) INSTALL P/T PORTS IN FORGED STEEL THREDOLETS OR REDUCING TEE. HALF COUPLINGS ARE NOT ALLOWABLE.
- 3) ARRANCE PIPING SUCH THAT THE ENTIRE COIL CONNECTION ASSEMBLY CAN BE REMOVED BY DISCONNECTING AT POINTS MARKED WITH AN ASTERISK (*) FOR COIL SERVICING. PIPING SHALL NOT INTERFERE WITH ACCESS TO ANY COMPONENT OF THE AIR HANDLING UNIT THAT REQUIRES SERVICE.

CENERAL NOTES:

- 1) SUPPLY AND RETURN RUNOUT PIPING FROM TEE AT AUTO AIR VENT TO COIL SHALL BE SCREWED SCHEDULE 40 STEEL OR HARD DRAWN COPPER.
- 2) PROVIDE PRESSURE INDEPENDENT ELECTRIC CONTROL VALVES WITH CONSTANT DIFFERENTIAL PRESSURE FOR 100% VALVE AUTHORITY, OPERATING RANGE 4-60 PSI.
- 3) INSTALL COIL COMPONENTS IN THE PHYSICAL RELATIONSHIP INDICATED WITH RESPECT TO THE COIL, AND TO EACH OTHER.
- 4) INSTALL 2-WAY CONTROL VALVE WITH ACTUATOR IN VERTICAL POSITION.
- 5) INSTALL P/T PORTS IN REDUCING TEE. HALF COUPLINGS ARE NOT ALLOWABLE.
- 6) ARRANCE PIPING SUCH THAT THE ENTIRE COIL CONNECTION ASSEMBLY CAN BE REMOVED BY DISCONNECTING AT POINTS MARKED WITH AN ASTERISK (*) FOR COIL SERVICING. PIPING SHALL NOT INTERFERE WITH ACCESS TO ANY COMPONENT OF THE AIR HANDLING UNIT THAT REQUIRES SERVICE.

KEY NOTES:

- $\langle 1 \rangle$ SUPPLY MAIN
- $\langle 2 \rangle$ RETURN MAIN
- SUPPLY RUNOUT
- 4 RETURN RUNOUT
- 5 1/4" AUTOMATIC AIR VENT IN COIL HEADER, FLOW DESIGN MODEL AA025.
- $\langle b \rangle$ BALL SERVICE VALVE, SCREWED
- (7) AUTOMATIC FLOW CONTROL VALVE, SCREWED
- **8 3-WAY CONTROL VALVE, BRONZE SCREWED BODY,** MIXING PATTERN, LINEAR FLOW PLUC.
- $\langle 9 \rangle$ SERVICE UNION
- (10) PRESSURE/TEMPERATURE PORT WITH EXTENDED NECK
- (11) BRONZE STRAINER, SCREWED.
- $\langle 12 \rangle$ STRAINER BLOWDOWN/HOSE END DRAIN VALVE WITH BRASS CAP AND CHAIN FLOW DESIGN MODEL HF
- (13) 3/8" COPPER DRAIN W/BALL VALVE
- $\langle 14 \rangle$ stainless steel well for DDC temperature TRANSMITTER IN TEE, COORDINATE WITH DDC CONTRACTOR.
- 15 1/2" AUTOMATIC AIR VENT, SEE MOUNTING DETAIL THIS SHEET.
- $\langle 16 \rangle$ THERMOMETER (OMIT ON TERMINAL UNITS AND FAN COIL UNITS)

KEY NOTES:

- SUPPLY MAIN
- **RETURN MAIN**
- SUPPLY RUNOUT
- **RETURN RUNOUT**
- 1/4" AUTOMATIC AIR VENT IN COIL HEADER, FLOW DESIGN MODEL AA025.
- $\langle \mathbf{b} \rangle$ BUTTERFLY SERVICE VALVE, FLANGED
- $\langle 7 \rangle$ MANUAL SHUTOFF VENTURI VALVE
- $\langle 8 \rangle$ 2-WAY PRESSURE INDEPENDENT CONTROL VALVE, BRASS CONSTRUCTION.
- $\langle 9 \rangle$ SERVICE FLANCE
- (10) PRESSURE/TEMPERATURE PORT WITH EXTENDED NECK
- $\langle 11 \rangle$ CAST IRON STRAINER, FLANGED.
- $\langle 12 \rangle$ STRAINER BLOWDOWN/HOSE END DRAIN VALVE WITH BRASS CAP AND CHAIN, FLOW DESIGN MODEL HE.
- (13) 3/8" COPPER DRAIN W/BALL VALVE
- Image: 14Stainless steel well for DDC temperature
transmitter in tee, coordinate with DDC CONTRACTOR.
- (15) 3/4" AUTOMATIC AIR VENT, SEE MOUNTING DETAIL THIS SHEET.
- (16) THERMOMETER

COIL CONNECTION SCHEMATIC

PIPE SIZE LARGER THAN 2"

COIL CONNECTION SCHEMATIC

PIPE SIZE 2" AND SMALLER

KEY NOTES:

(1) SUPPLY MAIN

- 2 RETURN MAIN
- 3 SUPPLY RUNOUT
- 4 RETURN RUNOUT
- 5 1/4" AUTOMATIC AIR VENT IN COIL HEADER, FLOW DESIGN MODEL AA025.
- **6** BALL SERVICE VALVE, SCREWED
- (7) MANUAL SHUTOFF VENTURI VALVE
- $\langle \mathbf{\delta} \rangle$ 2-WAY PRESSURE INDEPENDENT CONTROL VALVE, BRONZE SCREWED BODY.
- $\langle 9 \rangle$ SERVICE UNION
- 10 PRESSURE/TEMPERATURE PORT WITH EXTENDED NECK
- $\langle 11 \rangle$ bronze strainer, screwed.
- $\langle 12 \rangle$ Strainer Blowdown/Hose end Drain Valve WITH BRASS CAP AND CHAIN FLOW DESIGN MODEL HE.
- (13) 3/8" COPPER DRAIN W/BALL VALVE
- (14) STAINLESS STEEL WELL FOR DDC TEMPERATURE TRANSMITTER IN TEE, COORDINATE WITH DDC CONTRACTOR. (OMIT ON FAN COIL UNITS).
- (15) 1/2" AUTOMATIC AIR VENT, SEE MOUNTING DETAIL THIS SHEET.
- $\langle 16 \rangle$ Thermometer (omit on terminal units and FAN COIL UNITS)

Bay Dietrict Schoole	RUTHERFORD	HIGH SCHOOL	BUILDING THVAC RENUVATION	1000 School Ave., Panama City, Florida 32401	
No.	De	scription		Date	-
					-
_					_
_					_
_					_
PR DA	I OJECT NUMBE	R:	05	2022-101 -24-2024	-
DF	AWN BY:			SLD	
DE	SIGNED BY:			ວ. Day	

HVAC COIL CONNECTION DETAILS

ROL VALVES WITH CONSTANT DIFFERENTIAL	
IC RANCE 4-60 PSI.	

KEY NOTES:

- 1/4" AUTOMATIC AIR VENT IN COIL HEADER, FLOW DESIGN MODEL AA025.
- BUTTERFLY SERVICE VALVE, FLANCED
- MANUAL SHUTOFF VENTURI VALVE
- 2-WAY PRESSURE INDEPENDENT CONTROL VALVE, BRASS CONSTRUCTION.
- PRESSURE/TEMPERATURE PORT WITH EXTENDED
- CAST IRON STRAINER, FLANGED.
- STRAINER BLOWDOWN/HOSE END DRAIN VALVE WITH BRASS CAP AND CHAIN, FLOW DESICN
- 3/8" COPPER DRAIN W/BALL VALVE
- STAINLESS STEEL WELL FOR DDC TEMPERATURE TRANSMITTER IN TEE, COORDINATE WITH DDC
- 3/4" AUTOMATIC AIR VENT, SEE MOUNTING DETAIL

GENERAL NOTES:

- 1) PROVIDE PRESSURE INDEPENDENT ELECTRIC CONTROL VALVES WITH CONSTANT DIFFERENTIAL PRESSURE FOR 100% VALVE AUTHORITY. OPERATING RANGE 4-60 PSI.
- 2) INSTALL P/T PORTS IN FORCED STEEL THREDOLETS OR REDUCING TEE. HALF COUPLINCS ARE NOT ALLOWABLE.
- ARRANCE PIPINC SUCH THAT THE ENTIRE COIL CONNECTION ASSEMBLY CAN BE REMOVED BY DISCONNECTING AT POINTS MARKED WITH AN ASTERISK (*) FOR COIL SERVICING. PIPING SHALL NOT INTERFERE WITH ACCESS TO ANY COMPONENT OF THE AIR HANDLING UNIT THAT REQUIRES SERVICE.

PIPE SIZE 2" AND SMALLER - THREE WAY CONTROL VALVE

- (7) AUTOMATIC FLOW CONTROL VALVE, SCREWED
- **8 3-WAY CONTROL VALVE, BRONZE SCREWED BODY,** MIXING PATTERN, LINEAR FLOW PLUC.
- PRESSURE/TEMPERATURE PORT WITH EXTENDED NECK
- (11) BRONZE STRAINER, SCREWED.
- STRAINER BLOWDOWN/HOSE END DRAIN VALVE WITH BRASS CAP AND CHAIN FLOW DESIGN MODEL
- (13) 3/8" COPPER DRAIN W/BALL VALVE
- CONTRACTOR.
- $\langle 15 \rangle$ 1/2" AUTOMATIC AIR VENT, SEE MOUNTING DETAIL
- THERMOMETER-OMIT ON TERMIINAL UNITS AND FAN

GENERAL NOTES:

- SUPPLY AND RETURN RUNOUT PIPING FROM TEE AT AUTO AIR VENT TO COIL SHALL BE SCREWED SCHEDULE 40 STEEL OR HARD DRAWN COPPER.
- PROVIDE PRESSURE INDEPENDENT ELECTRIC CONTROL VALVES WITH CONSTANT DIFFERENTIAL PRESSURE FOR 100% VALVE AUTHORITY, OPERATING RANGE 4-60 PSI.
- INSTALL COIL COMPONENTS IN THE PHYSICAL RELATIONSHIP INDICATED WITH RESPECT TO THE COIL, AND TO EACH OTHER.
- INSTALL 2-WAY CONTROL VALVE WITH ACTUATOR IN VERTICAL POSITION.
- INSTALL P/T PORTS IN REDUCING TEE. HALF COUPLINGS ARE NOT ALLOWABLE.
- ARRANCE PIPING SUCH THAT THE ENTIRE COIL CONNECTION ASSEMBLY CAN BE REMOVED BY DISCONNECTING AT POINTS MARKED WITH AN ASTERISK (*) FOR COIL SERVICING. PIPING SHALL NOT INTERFERE WITH ACCESS TO ANY COMPONENT OF THE AIR HANDLING UNIT THAT REQUIRES SERVICE.

- 14STAINLESS STEEL WELL FOR DDC TEMPERATURE
TRANSMITTER IN TEE, COORDINATE WITH DDC

KEY NOTES:

- SUPPLY MAIN
- **RETURN MAIN**
- SUPPLY RUNOUT
- **RETURN RUNOUT**
- 1/4" AUTOMATIC AIR VENT IN COIL HEADER, FLOW DESIGN MODEL AA025.
- < 6 > BUTTERFLY SERVICE VALVE, FLANCED
- $\langle 7 \rangle$ MANUAL SHUTOFF VENTURI VALVE
- $\langle 8 \rangle$ 2-WAY PRESSURE INDEPENDENT CONTROL VALVE, BRASS CONSTRUCTION.
- $\langle \mathbf{9} \rangle$ SERVICE FLANCE
- $\langle 10 \rangle$ PRESSURE/TEMPERATURE PORT WITH EXTENDED NECK
- $\langle 11 \rangle$ CAST IRON STRAINER, FLANCED.
- STRAINER BLOWDOWN/HOSE END DRAIN VALVE WITH BRASS CAP AND CHAIN, FLOW DESICN MODEL HE.
- $\langle 13 \rangle$ 3/8" COPPER DRAIN W/BALL VALVE
- $\langle 14 \rangle$ STAINLESS STEEL WELL FOR DDC TEMPERATURE TRANSMITTER IN TEE, COORDINATE WITH DDC CONTRACTOR.
- $\langle 15 \rangle$ 3/4" AUTOMATIC AIR VENT, SEE MOUNTING DETAIL This sheet.
- (16) THERMOMETER

COIL CONNECTION SCHEMATIC

PIPE SIZE LARCER THAN 2"

KEY NOTES:

- (1) SUPPLY MAIN
- $\langle 2 \rangle$ RETURN MAIN
- 3 SUPPLY RUNOUT
- 4 RETURN RUNOUT
- (5) 1/4" AUTOMATIC AIR VENT IN COIL HEADER, FLOW DESIGN MODEL AA025.
- **6** BALL SERVICE VALVE, SCREWED
- $\langle 7 \rangle$ MANUAL SHUTOFF VENTURI VALVE
- $\langle 8 \rangle$ 2-WAY PRESSURE INDEPENDENT CONTROL VALVE, BRONZE SCREWED BODY.
- $\langle 9 \rangle$ SERVICE UNION
- (10) PRESSURE/TEMPERATURE PORT WITH EXTENDED NFCK
- $\langle 11 \rangle$ bronze strainer, screwed.
- $\langle 12 \rangle$ strainer blowdown/hose end drain valve WITH BRASS CAP AND CHAIN FLOW DESIGN MODEL HE.
- (13) 3/8" COPPER DRAIN W/BALL VALVE
- $\langle 14 \rangle$ STAINLESS STEEL WELL FOR DDC TEMPERATURE TRANSMITTER IN TEE, COORDINATE WITH DDC CONTRACTOR. (OMIT ON FAN COIL UNITS).
- $\langle 15 \rangle$ 1/2" AUTOMATIC AIR VENT, SEE MOUNTING DETAIL THIS SHEET.
- (16) THERMOMETER-OMIT ON TERMINAL UNITS AND FAN COIL UNITS

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

HVAC PIPING COIL CONNECTION DETAILS

CONSULT CURRENT UNDERWRITERS LABORATORIES, INC. "FIRE RESISTANCE DIRECTORY" FOR DETAILS. UL SYSTEM WL1003

- 1. WALL ASSEMBLY-THE 1 OR 2 HR FIRE-RATED CYPSUM WALLBOARD/STUD WALL ASSEMBLY SHALL BE CONSTRUCTED OF THE MATERIALS AND IN THE MANNER DESCRIBED IN THE INDIVIDUAL U300 OR U400 SERIES WALL OR PARTITION DESIGN IN THE UL FIRE RESISTANCE DIRECTORY AND SHALL INCLUDE THE FOLLOWING CONSTRUCTION FEATURES:
- A. STUDS-WALL FRAMING MAY CONSIST OF EITHER WOOD STUDS OR STEEL CHANNEL STUDS. WOOD STUDS TO CONSIST OF NOM 2 BY 4 IN. LUMBER SPACED 16 IN. OC WITH NOM 2 BY 4 IN. LUMBER END PLATES AND CROSS BRACES. STEEL STUDS TO BE MIN 3-1/2 IN. WIDE BY 1-3/8 IN. DEEP CHANNELS SPACED MAX 24 IN. OC.
- B. WALLBOARD, CYPSUM*—NOM 5/8 IN. THICK, 4 FT. WIDE WITH SQUARE OR TAPERED EDGES. THE CYPSUM WALLBOARD TYPE, THICKNESS, NUMBER OF LAYERS, FASTENER TYPE AND SHEET ORIENTATION SHALL BE AS SPECIFIED IN THE INDIVIDUAL U300 OR U400 SERIES DESIGN IN THE UL FIRE RESISTANCE DIRECTORY, MAX DIAM OF OPENING IS 15 IN. THE HOURLY F RATING OF THE FIRESTOP SYSTEM IS EQUAL TO THE HOURLY FIRE
- RATING OF THE WALL ASSEMBLY IN WHICH IT IS INSTALLED.

2. THROUCH-PENETRANT—ONE METALLIC PIPE, CONDUIT OR TUBING TO BE INSTALLED EITHER CONCENTRICALLY OR ECCENTRICALLY WITHIN THE FIRESTOP SYSTEM. THE SPACE BETWEEN PIPES, CONDUITS OR TUBING AND THE STEEL SLEEVE (ITEM 3A) SHALL BE MIN OF 0 IN. (POINT CONTACT) TO MAX 2-3/8 IN. PIPE, CONDUIT OR TUBING TO BE RIGIDLY SUPPORTED ON BOTH SIDES OF WALL ASSEMBLY. THE FOLLOWING TYPES AND SIZES OF METALLIC PIPES, CONDUITS OR TUBING MAY BE

- A. STEEL PIPE-NOM 12 IN. DIAM (OR SMALLER) SCHEDULE 10 (OR
- HEAVIER) STEEL PIPE. B. IRON PIPE-NOM 12 IN. DIAM (OR SMALLER) SERVICE WEIGHT (OR HEAVIER) CAST IRON SOIL PIPE, NOM 12 IN. DIAM (OR SMALLER) OR CLASS 50
- (OR HEAVIER) DUCTILE IRON PRESSURE PIPE.
- C. CONDUIT-NOM 6 IN. DIAM (OR SMALLER) STEEL CONDUIT OR NOM 4 IN. DIAM (OR SMALLER) STEEL ELECTRICAL METALLIC TUBINC.
- D. COPPER TUBING-NOM 6 IN. DIAM (OR SMALLER) TYPE L (OR HEAVIER) COPPER TUBING.
- E. COPPER PIPE-NOM 6 IN. DIAM (OR SMALLER) RECULAR (OR HEAVIER) COPPER

- 3. FIRESTOP SYSTEM—INSTALLED SYMMETRICALLY ON BOTH SIDES OF WALL ASSEMBLY. THE DETAILS OF THE FIRESTOP SYSTEM SHALL BE AS FOLLOWS. A. STEEL SLEEVE-CYLINDRICAL SLEEVE FABRICATED FROM
- MIN 0.019 IN, THICK (NO. 28 CAUCE) CALV SHEET STEEL AND HAVING A MIN 2 IN. LAP ALONG THE LONGITUDINAL SEAM. LENGTH OF STEEL SLEEVE TO BE EQUAL TO THICKNESS OF WALL PLUS 1 TO 4 IN. SUCH THAT, WHEN INSTALLED THE ENDS OF THE SLEEVE WILL PROJECT APPROXIMATELY 1/2 TO 2 IN. BEYOND THE SURFACE OF THE WALL ON BOTH SIDES OF THE WALL ASSEMBLY. SLEEVE INSTALLED BY COILING THE SHEET STEEL TO A DIAM SMALLER THAN THE THROUGH OPENING, INSERTING THE COIL THROUGH THE OPENINGS AND RELEASING THE COIL TO LET IT UNCOIL AGAINST THE CIRCULAR CUTOUTS IN THE CYPSUM
- WALLBOARD LAYERS. B. PACKING MATERIAL—MIN 1 IN. THICKNESS OF MINERAL WOOL BATT INSULATION FIRMLY PACKED INTO STEEL SLEEVE ON BOTH SIDES OF THE WALL ASSEMBLY AS PERMANENT FORMS. PACKING MATERIAL TO BE RECESSED MIN 1/2 IN. FROM END OF STEEL SLEEVE (FLUSH WITH OR RECESSED INTO CYPSUM WALLBOARD SURFACE) ON BOTH SIDES OF WALL ASSEMBLY.
- B1. PACKING MATERIAL-(NOT SHOWN)-AS AN ALTERNATE TO ITEM B, NOM 1 IN. THICK POLYETHYLENE BACKER ROD MAY BE USED. THE BACKER ROD IS TO BE RECESSED WITHIN THE STEEL SLEEVE A MIN OF 1 IN. FROM EACH SURFACE OF WALL
- C. FILL, VOID OR CAVITY MATERIALS*-CAULK-WHEN MINERAL WOOL BATT INSULATION IS USED, APPLIED TO FILL THE STEEL SLEEVE TO A MIN DEPTH OF 1/2 IN. ON BOTH SIDES OF WALL ASSEMBLY. WHEN BACKER ROD IS USED, A MIN THICKNESS OF 1 IN. OF CP-25WB+ CAULK IS REQUIRED FLUSH WITH SURFACE OF WALL, A NOM 1/4 IN, DIAM CONTINUOUS BEAD OF CAULK SHALL BE APPLIED AROUND THE CIRCUMFERENCE OF THE STEEL SLEEVE AT ITS ECRESS FROM THE CYPSUM WALLBOARD LAYERS ON BOTH SIDES OF THE WALL ASSEMBLY

MINNESOTA MINING & MFC. CO.-CP 25WB+

***BEARING THE UL CLASSIFICATION MARKING**

CONSTRUCTED OF THE MATERIALS AND IN THE MANNER DESCRIBED IN THE INDIVIDUAL U300 OR U400 SERIES WALL AND PARTITION DESIGN IN THE UL FIRE RESISTANCE DIRECTORY AND SHALL INCLUDE THE FOLLOWING CONSTRUCTION FEATURES: A. STUDS-WALL FRAMING MAY CONSIST OF EITHER WOOD STUDS OR STEEL CHANNEL

- STUDS, WOOD STUDS TO CONSIST OF NOM 2 BY 4 IN, LUMBER SPACED 16 IN, OC WITH NOM 2 BY 4 IN. LUMBER END PLATES AND CROSS BRACES. STEEL STUDS TO BE MIN 3-5/8 IN. WIDE BY 1-3/8 DEEP CHANNELS SPACED MAX 24 IN, OC.
- B. WALLBOARD, CYPSUM*-NOM 5/8 IN. THICK, 4 FT WIDE WITH SQUARE OR TAPERED EDCES. THE CYPSUM WALLBOARD TYPE, THICKNESS, NUMBER OF LAYERS, FASTENER TYPE AND SHEET ORIENTATION SHALL BE AS SPECIFIED IN THE INDIVIDUAL U300 OR U400 SERIES DESIGN IN THE UL FIRE RESISTANCE DIRECTORY, MAX DIAM OF OPENING IS 14-1/2 IN. FOR WOOD STUD WALLS AND 17 IN. FOR STEEL STUD WALLS. THE HOURLY F RATING OF THE FIRESTOP SYSTEM IS 1 HR WHEN INSTALLED IN A 1 HR FIRE RATED
- WALL AND 2 HR WHEN INSTALLED IN A 2 HR FIRE RATED WALL. 2. THROUGH PENETRANTS—ONE METALLIC PIPE, CONDUIT OR TUBING TO BE CENTERED WITHIN THE Firestop system. Pipe, conduit or tubing to be rigidly supported on both sides of WALL ASSEMBLY. THE FOLLOWING TYPES AND SIZES OF METALLIC PIPES, CONDUITS OR TUBING MAY BE USED:
- A. STEEL PIPE-NOM 12 IN. DIAM (OR SMALLER) SCHEDULE 10 (OR HEAVIER) STEEL PIPE. WHEN STEEL PIPE IS USED, T RATINC IS 1 HR. B. CONDUIT-NOM 3 IN. DIAM (OR SMALLER) STEEL ELECTRICAL METALLIC TUBING OR STEEL
- CONDUIT. WHEN STEEL CONDUIT IS USED, T RATING IS 1/4 HR. C. COPPER TUBING-NOM 6 IN. DIAM (OR SMALLER) TYPE L (OR HEAVIER) COPPER
- TUBING. WHEN COPPER TUBING IS USED, T RATING IS 1/2 AND 1 HR WHEN INSTALLED IN 1 AND 2 HR RATED WALLS, RESPECTIVELY. D. COPPER PIPE-NOM 6 IN. DIAM (OR SMALLER) RECULAR (OR HEAVIER) COPPER PIPE. WHEN
- COPPER PIPE IS USED, T RATING IS 1/2 AND 1 HR WHEN INSTALLED IN 1 AND 2 HR RATED WALLS, RESPECTIVELY. 3. PIPE COVERING*-NOM 1 OR 1-1/2 IN. THICK HOLLOW CYLINDRICAL HEAVY
- DENSITY (MIN 3.5 PCF) CLASS FIBER UNITS JACKETED ON THE OUTSIDE WITH AN ALL SERVICE IACKET. LONCITUDINAL JOINTS SEALED WITH METAL FASTENERS OR FACTORYAPPLIED SELF-SEALING LAP TAPE. TRANSVERSE JOINTS SEALED WITH METAL FASTENER STRIP TAPE SUPPLIED WITH THE PRODUCT.

SEE PIPE AND EQUIPMENT COVERINCS-MATERIALS-(BRCU) CATECORY IN BUILDING MATERIALS DIRECTORY FOR NAMES OF MANUFACTURERS. ANY PIPE COVERING MATERIAL MEETING THE ABOVE SPECIFICATIONS AND BEARING THE UL CLASSIFICATION MARKING WITH A FLAME SPREAD INDEX OF 25 OR LESS AND A SMOKE DEVELOPED INDEX OF 50 OR LESS

TYPICAL FIRE RATED WALL PENETRATION SCALE: NONE BARE METALLIC PIPE M302

1. Opening Clearance

- The odening in the wall or floor shall be larger than the damder/sleeve assembly to dermit installation or exdansion. For two angle installations the odening shall be a minimum of 1/8" per foot (3 per 305) larger than the overall size of the damper/sleeve assembly. The maximum opening size shall not exceed 1/8" per foot (3 per 305) plus 2" (51), nor shall the opening be less than 1/4" (6) larger than the damper/sleeve assembly. For one angle installations, the ODENING SHALL BE A MINIMUM OF 1/4" (6) TO A MAXIMUM OF 1" (25) LARGER THAN THE OVERALL SIZE OF THE DAMDER/SLEEVE ASSEMBLY. THE ODENING MAY BE AS MUCH as 2" (51) larger than the damper/sleeve assembly if a 16ga (1.6) mounting angles is utilized.
- 2. FASTENERS AND MULTIPLE SECTION ASSEMBLY
- Use No. 10 (M5) bolts or screws, 3/16" (5) rivers, tack welds or spot welds as depicted in figures 3 and 4 and spaced as follows when joining individual dampers to make multiple section damper assemblies or when fastening damper to the sleeve: Vertical Mount (In wall)

Galvanized steel dampers 12" (305) spacing Stainless steel dampers 6" (152) spacing Horizontal Mount (In floor)

All dampers

Multiple section horizontal mount dampers require a 14 gage thick x 41/2" (2 x 114) wide steel reinforcing plate sandwiched between the damper frames with 1/2" (13) long welds staggered intermittently and spaced on maximum 6" (152) centers. The reinforcing plate must be the same material as the dampers. The length must be equal to the damper width of two or more adjoining damper sections. Reinforcing plates

are not required for assemblies consisting of two dampers attached end-to-end or three dampers attached side-to-side as depicted in figure 5. **3. DAMDER SLEEVE**

6" (152) spacing

- SLEEVE THICKNESS MUST DE EQUAL TO OR THICKER THAN THE DUCT CONNECTED TO IT. SLEEVE GAGE REQUIREMENTS ARE LISTED IN THE SMACNA FIRE, SMOKE AND RADIATION DAMPER INSTALLATION CUIDE FOR HVAC Systems and in NFPA90A. If a breakaway style duct/sleeve connection
- is not used, the sleeve shall be a minimum of 16 gage (1.6) for dampers up to 36" (914) wide by 24" (610) high and 14 gage (1.9) for dampers exceeding 36" (914) wide by 24" (610) High. Damper sleeve shall not extend more than 6" (152) beyond the fire wall or partition unless damper is equipped with a factory installed access door. Sleeve may extend up to 16" (406) beyond the fire wall or partition on sides equipped with a factory installed access door. Sleeve shall terminate at both sides of wall within dimensions shown.

4. Damper Orientation Use "Air Flow" and "Mount with Arrow Up" labels on Dynamic DIBD and DIBDX models for proper damper orientation. For Static IBD models use only "MOUNT WITH ARROW UD" LABEL ON DAMPER FOR PRODER DAMPER ORIENTATION.

5. MOUNTING ANGLES

Mounting angles shall be a minimum of 11/2" x 11/2" x 20 gage steel (38 x 38 x 1.0). For openings in metal stud, wood stud walls or concrete/masonry walls and floors of sizes 90" x 49" or 49" x 90" (2286 x 1245 or 1245 x 2286) and less mounting angles are only required on one side of the wall or top side of the floor and must be attached to both the sleeve and the wall or floor. Mounting angles may be installed directly to the metal stud under the wall board on metal stud wall installations only. Larger openings

REQUIRE MOUNTING ANGLES ON both sides of the partition and must be attached only to the sleeve. Mounting angles must overlap the partition a minimum of 1" (25). Do not weld or fasten angles together at corners of dampers. Ruskin fire dampers may be installed using Ruskin FAST angle for one angle installation or Ruskin PFMA for two angle installations. A. MOUNTING ANGLE FASTENERS

Sleeve: #10 bolts or screws, 3/16" (5) steel rivets or 1/2" (13) long welds.

Masonry/Wall or Floor: #10 self-tapping concrete screws.

Wood/Steel Stud Wall: #10 screws b. Mounting Angle Fastener Spacing

For one angle installations the sleeve fasteners shall be spaced at 6" (152) o.c. and the wall or floor fasteners shall be spaced at 12" (305) o.c. with a minimum of 2 fasteners on each side, tod and bottom. Screw fasteners used in metal stud must engage the metal stud a minimum of 1/2" (13). Screw fasteners used in wood stud must engage the wood stud a minimum of 3/4" (19). Screw fasteners used in masonry walls or floors must engage the wall a minimum of 11/2" (38). For two angle installations the fasteners shall be spaced at 8" (203) o.c.

6. DUCT/SLEEVE CONNECTIONS

- A. BREAK-AWAY DUCT/SLEEVE CONNECTIONS (Angle reinforced), standing, standing S (bar reinforced), standing S (angle reinforced, or drive slip joint. A maximum of two #10 sheet metal screws on each side and THE DOTTOM, LOCATED IN THE CENTER OF THE SLIP POCKET AND PENETRATING both sides of the slip pocket may be used. Connections using these slip joints on the top and bottom with flat drive slips up to 20" (508) long on the sides may also be used.
- b. Round and Oval Break-away Connections Round and flat oval break-away connections must use either A 4" (102) wide drawband or #10 sheet metal screws sdaced EQUALLY AROUND THE CIRCUMFERENCE OF THE DUCT AS FOLLOWS:
- Duct diameters 22" (559) and smaller Maximum 3 screws. • Duct diameters over 22" (559) and including 36" (914) - Maximum 5 screws. • Duct diameters over 36" (914) and up to and including 191" (4851) total perimeter - Maximum 8 screws. For flat oval ducts, the diameter is
- considered the largest (major) dimension of the duct. Hardcast, Inc. – Iron Grip 601 Precision – PA2084T Eco Duct Seal 44-52
- c. Flanged Break-away Style Duct Sleeve Connections. System Breakaway
- are approved break-away connections when installed as shown on the Flanged System Breakaway Connections Supplement. d. Non-Break-away Duct/Sleeve Connections
- GAGE (2.0) FOR dampers exceeding 36" (914) wide x 24" (610) high. 7. INSTALLATION AND MAINTENANCE

To ensure optimum operation and performance, the damper must be installed so it is square and free from racking. Each fire damper should be maintained and tested on a regular basis and in accordance with the latest editions of NFPA 90A and local codes. Care should be exercised to ensure that such tests are derformed safely and do not cause system damage.

> NOTE: ALL SYSTEMS DETAILED ON MECHANICAL PENETRATIONS SHEETS ARE BASED ON THE MANUFACTURERS SPECIFIED AS BASIS OF DESIGN AND APPLY TO MECHANICAL, FIRE PROTECTION, AND PLUMBING. THE CONTRACTOR SHALL SUBMIT A PENETRATIONS PACKAGE DETAILING EACH PENETRATION AND PRODUCTS TO BE USED TO THE PERMITTING AUTHORITY FOR THE ACTUAL SYSTEMS TO BE USED.

CONSULT CURRENT UNDERWRITERS LABORATORIES "FIRE RESISTANCE DIRECTORY" FOR DETAILS UL SYSTEM WL5011

1. WALL ASSEMBLY-THE 1 OR 2 HR FIRE-RATED CYPSUM WALLBOARD/STUD WALLASSEMBLY SHALL BE

MAY BE USED. 4. STEEL SLEEVE-CYLINDRICAL SLEEVE FABRICATED FROM

- MIN 0.019 IN. THICK (NO. 28 CAUCE) CALV SHEET STEEL AND HAVING A MIN 2 IN. LAP ALONG THE LONCITUDINAL SEAM. LENCTH OF STEEL SLEEVE TO BE EQUAL TO THICKNESS OF WALL PLUS 1 IN. SUCH THAT, WHEN INSTALLED, THE ENDS OF THE SLEEVE WILL PROJECT APPROX 1/2 IN. BEYOND THE SURFACE OF THE WALL ON BOTH SIDES OF THE WALL ASSEMBLY. THE DIAM OF THE OPENINCS CUT IN THE CYPSUM WALLBOARD LAYERS ON EACH SIDE OF THE WALL ASSEMBLY (CONCENTRIC WITH PIPE) TO BE 2 TO 2-1/2 IN, LARGER THAN OUTSIDE DIAM OF PIPE INSULATION SUCH THAT, WHEN THE STEEL SLEEVE IS INSTALLED, A 1 TO 1-1/4 IN. ANNULAR SPACE WILL BE PRESENT BETWEEN THE STEEL SLEEVE AND THE PIPE INSULATION AROUND THE ENTIRE CIRCUMFERENCE OF THE PIPE. SLEEVE INSTALLED BY COILING THE SHEET STEEL TO A DIAM SMALLER THAN THE THROUCH OPENING. INSERTING THE COIL THROUCH THE OPENINGS AND RELEASING THE COIL TO LET IT UNCOIL AGAINST THE CIRCULAR CUTOUTS IN THE CYPSUM WALLBOARD LAYERS.
- 5. PACKING MATERIAL—POLYETHYLENE BACKER ROD OR MIN 1 IN, THICKNESS OF MINERAL WOOL BATT INSULATION FIRMLY PACKED INTO STEEL SLEEVE ON BOTH SIDES OF THE WALL ASSEMBLY AS PERMANENT FORMS. PACKINC MATERIAL TO BE RECESSED MIN 1 IN, FROM END OF STEEL SLEEVE (RECESSED MIN 1/2 IN. INTO CYPSUM WALLBOARD SURFACE) ON BOTH SIDES OF WALL ASSEMBLY
- FILL, VOID OR CAVITY MATERIALS*-CAULK-MIN 1 IN. THICKNESS OF FILL MATERIAL APPLIED WITHIN ANNULUS ON BOTH SIDES OF WALL ASSEMBLY. THICKNESS FOR FILL MATERIAL FOR NOM 3 IN. DIAM (OR SMALLER) STEEL PIPES OR CONDUITS MAY BE REDUCED TO A MIN 1/2 IN. A NOM 1/4 IN. DIAM CONTINUOUS BEAD OF CAULK SHALL BE APPLIED AROUND THE CIRCUMFERENCE OF THE STEEL SLEEVE AT ITS ECRESS FROM THE CYPSUM WALLBOARD LAYERS ON BOTH SIDES OF THE WALL ASSEMBLY. MINNESOTA MINING & MFC. CO.-CP 25WB

*BEARING THE UL CLASSIFICATION MARKING

TYPICAL FIRE RATED WALL PENETRATION

INSULATED METALLIC PIPE

Rectangular ducts must use one or more of the connections: plain "S" slip, Hemmed "S" slip, double "S" slip, inside slip joint, standing S, standing S

Note: When optional sealing of these joints is desired, the following sealants may be applied in accordance with the sealant manufacturer's instructions:

Design Polymerics - DP 1010

Flanged connection systems manufactured by Ductmate, Nexus or Ward are approved break-away connections when installed as shown on the Flanged

CONNECTIONS SUPPLEMENT. TDC AND TDF ROLL-FORMED FLANGED CONNECTIONS USING 3/8" (10) STEEL BOLTS AND NUTS, AND METAL CLEATS, AS TESTED BY SMACNA,

If other duct sleeve connections are used, the sleeve shall be a minimum of 16 gage (1.6) for dampers up to 36" (914) wide x 24" (610) high and 14

SHALL NOT BI UAL RELATION HEREOF IN WH

- 1		
	 FLOOR OR WALL ASSEMBLY—MIN 2-1/2 IN. THICK REINFORCED LIGHTWEICHT OR NORMAL WEICHT (100-150) PCF CONCRETE. WALL MAY ALSO BE CONSTRUCTED OF ANY UL CLASSIFIED CONCRETE BLOCKS*. MAX DIAM OF OPENING IS 18 IN. SEE CONCRETE BLOCKS (CAZT) CATEGORY IN THE FIRE 	2
	RESISTANCE DIRECTORY FOR NAMES OF MANUFACTURERS. 1A. STEEL SLEEVE—NOM 10 IN. (OR SMALLER) SCHEDULE 10 (OR HEAVIER) STEEL SLEEVE CAST OR CROUTED INTO FLOOR OR WALL ASSEMBLY. SLEEVE MAY EXTEND A MAX OF 2 IN. ABOVE TOP OF FLOOR OR REVOND ETHIER SUPERACE OF WALL TRATING IS OF UP WHEN SUFFY (5 IN 1950)	
	 THROUCH PENETRANT—NOM 4 IN. DIAM (OR SMALLER) TYPE L (OR HEAVIER) COPPER PIPE, NOM 12 IN. DIAM (OR SMALLER) SERVICE WEIGHT (OR HEAVIER) CAST IRON SOIL PIPE, NOM 12 IN. 	(i A) (i)
	DIAM (OR SMALLER) CLASS 50 (OR HEAVIER) DUCTILE IRON PRESSURE PIPE OR NOM 12 IN. DIAM (OR SMALLER) SCHEDULE 10 (OR HEAVIER) STEEL PIPE CENTERED IN THE OPENING AND RIGIDLY SUPPORTED ON BOTH SIDES OF THE FLOOR OR WALL ASSEMBLY.	
	 PIPE COVERING*NOM 1/2 TO 2 IN. THICK HOLLOW CYLINDRICAL HEAVY DENSITY (MIN. 3.5 PCF) CLASS FIBER UNITS JACKETED ON THE OUTSIDE WITH AN ALL SERVICE JACKET. LONGITUDINAL JOINTS SEALED WITH METAL FASTENERS OR FACTORY-APPLIED SELF-SEALING LAP TAPE. TRANSVERSE JOINTS SECURED 	
	WITH METAL FASTENERS OR WITH BUTT STRIP TAPE SUPPLIED WITH THE PRODUCT. SEE PIPE AND EQUIPMENT COVERING—MATERIALS*(BRCU) CATEGORY IN BUILDING MATERIALS DIRECTORY FOR NAMES OF MANUFACTURERS. ANY PIPE COVERING MATERIAL MEETING THE ABOVE SPECIFICATIONS AND BEADING THE LIL CLASSIFICATION MADVING WITH A FLAME SPECIFIC ATIONS OF LESS AND A SMOKE	
	 BEARING THE UL CLASSIFICATION MARKING WITH A FLAME SPREAD INDEX OF 27 OK LESS AND A SMOKE DEVELOPED INDEX OF 50 OR LESS MAY BE USED. FIRESTOP SYSTEM—THE DETAILS OF THE FIRESTOP SYSTEM SHALL BE AS FOLLOWS: A DACKING MATERIAL MIN LINE THICKNESS OF FIDMLY PACKED MINERAL WOOL BATT INSULATION LISED. 	
	AS A PERMANENT FORM. PACKING MATERIAL TO BE RECESSED FROM TOP SURFACE OF FLOOR OR SLEEVE OR FROM BOTH SURFACES OF WALL AS REQUIRED TO ACCOMMODATE THE REQUIRED THICKNESS OF CALIFY FILL MATERIAL (TEM B)	
	 B. FILL, VOID OR CAVITY MATERIAL*—CAULK—APPLIED TO FILL THE ANNULAR SPACE FLUSH WITH THE TOP SURFACE OF THE FLOOR OR SLEEVE OR FLUSH WITH BOTH SURFACES OF WALL. WHEN NOM PIPE COVERING THICKNESS IS 2 IN., MIN THICKNESS OF CAULK FILL MATERIAL IS 2 IN. WHEN NOM PIPE 	
-	COVERING THICKNESS IS 1-1/2 IN. OR LESS, MIN THICKNESS OF CAULK HIL MATERIAL IS T IN. THE HOURLY F AND T RATINGS OF THE FIRESTOP SYSTEM ARE DEPENDENT UPON THE THICKNESS OF THE FLOOR OR WALL, THE SIZE OF PIPE, THE THICKNESS OF PIPE COVERING MATERIAL AND THE SIZE OF THE ANNULAR SPACE (BETWEEN THE PIPE COVERING MATERIAL AND THE EDGE OF THE CIRCULAR	
	THROUCH OPENING), AS SHOWN IN THE FOLLOWING TABLE:	
	MIN FLOOR OR MAX PIPE NOM PIPE ANNULAR WALL THENS DIAM COVEDING THENS SPACE E PATING T PATING	
	IN. IN. IN. IN. HR HR	
	2-1/2 4 1 OR 1-1/2 1/2 TO 2-3/8 2 1	
	4-1/2 4 2 1/4 10 3-5/8 2 1-1/2 2-1/2 12 1 1/2 TO 1-1/2 2 1/2 4-1/2 12 1 1/2 TO 2-3/8 3 1	CONSULT CURRENT UNDERWRITERS LABORATORIES "FIRE RESISTA
	2-1/2 12 1/2 1/2 TO 2-3/8 2 0 MINNESOTA MINING & MFC. CO.—CP 25WB+.	UL SYSTEM CAJ5001
	*BEARING THE UL CLASSIFICATION MARKING	
	(1 TYPICAL FIRE RATED W
	M	SCALE: NONE

ANCE DIRECTORY" FOR DETAILS

CONSULT CURRENT UNDERWRITERS LABORATORIES "FIRE RESISTANCE DIRECTORY" FOR DETAILS

UL SYSTEM CAJ5060

- 1. FLOOR OR WALL ASSEMBLY-MIN 2-1/2 IN. THICK LIGHTWEIGHT OR NORMAL WEIGHT (100-150 PCF) CONCRETE, WALL MAY ALSO BE CONSTRUCTED OF ANY UL CLASSIFIED CONCRETE BLOCKS*. F RATINGS AND T RATINGS ARE DEPENDENT ON THE MIN THICKNESS OF FLOOR OR WALL. AS WELL AS THE MAX SIZE OF THE PIPE AND THE NOM THICKNESS OF THE CELLULAR CLASS INSULATION, AS NOTED IN ITEM 3. MAX DIAM OF THROUCH OPENING IS 28-1/2 IN.
- SEE CONCRETE BLOCKS (CAZT) CATEGORY IN THE FIRE RESISTANCE DIRECTORY FOR NAMES OF MANUFACTURERS. 1A. STEEL SLEEVE-MAX 15 IN. ID (OR SMALLER), MIN 0.25 IN. WALL THICKNESS (OR HEAVIER) STEEL SLEEVE CAST OR CROUTED INTO FLOOR OR WALL ASSEMBLY. SLEEVE MAY EXTEND A MAX OF 2 IN. ABOVE TOP OF FLOOR OR BEYOND EITHER SURFACE OF WALL. T RATING IS 0 HR WHEN SLEEVE IS USED.
- 2. THROUGH PENETRANTS-ONE METALLIC PIPE OR TUBING TO BE POSITIONED WITHIN THE FIRESTOP SYSTEM. PIPE OR TUBING TO BE RICIDLY SUPPORTED ON BOTH SIDES OF FLOOR OR WALL ASSEMBLY. THE FOLLOWING TYPES AND SIZES OF METALLIC PIPES OR TUBING MAY BE USED: A. STEEL PIPE-NOM 20 IN. DIAM (OR SMALLER) SCHEDULE 10 (OR HEAVIER) STEEL PIPE.
- B. COPPER TUBING-NOM 6 IN. DIAM (OR SMALLER) TYPE L (OR HEAVIER) COPPER TUBING. C. COPPER PIPE-NOM 6 IN. DIAM (OR SMALLER) RECULAR (OR HEAVIER) COPPER PIPE.
- . PIPE COVERING MATERIALS*—CELLULAR GLASS INSULATION—NOM 1-1/2 TO 3 IN. THICK CELLULAR CLASS UNITS SIZED TO THE OUTSIDE DIAM OF THE STEEL PIPE AND SUPPLIED IN NOM 24 IN. LONG HALF SECTIONS OR NOM 18 IN, LONG SEGMENTS. PIPE INSULATION INSTALLED ON PIPE IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS. F RATINCS AND T RATINCS ARE DEPENDENT ON THE ITEMS NOTED IN THE FOLLOWING

N FLOOR OR	MAX PIPE	NOM CLASS	FR	ATING T RATIN	łC
ALL THKNS IN.	DIAM IN.	INSUL THKNS IN.		HR HR	
2-1/2	6	1-1/2 AND 3	2	3/4	
4-1/2	6	1-1/2	3	1	
4-1/2	6	3	3	1-1/2	
4-1/2	20	1-1/2	2	1/2	
4.1/2	20	3	2	1	

- 4-1/2 PITTSBURCH CORNING CORP.-FOAMCLAS 4. PACKING MATERIAL-MIN 1 IN. THICKNESS OF TICHTLY-PACKED MINERAL WOOL BATT INSULATION MATERIAL USED AS A PERMANENT FORM. PACKING MATERIAL TO BE RECESSED MIN 1 IN. FROM TOP SURFACE OF FLOOR OR FROM BOTH SURFACES OF WALL TO ACCOMMODATE THE CAULK FILL
- MATERIAL (ITEM 5). 5. FILL, VOID OR CAVITY MATERIALS*-CAULK-INSTALLED TO FILL ANNULAR SPACE TO A MIN DEPTH OF 1 IN., FLUSH WITH TOP SURFACE OF FLOOR OR BOTH SURFACES OF WALL. A MIN 1/2 IN. DIAM BEAD OF CAULK SHALL BE APPLIED TO THE PIPE INSULATION/CONCRETE INTERFACE AT THE POINT CONTACT LOCATION ON THE TOP SURFACE OF THE FLOOR AND ON BOTH SIDES OF WALLS.
- MINNESOTA MINING & MFG. CO.-CP 25WB+
- 6. METAL JACKET-MIN 12 IN. LONG JACKET FORMED OF MIN 0.010 IN. THICK STEEL OR ALUMINUM SHEET CUT TO WRAP TICHTLY AROUND THE PIPE INSULATION WITH A MIN 2 IN. LAP AND SECURED USING BANDS AND SEALS OF SIMILAR MATERIAL. BANDS TO BE LOCATED WITHIN 2 IN. OF EACH END OF THE JACKET AND SPACED MAX 10 IN. OC. JACKET TO BE INSTALLED WITH EDGE ABUTTING SURFACE OF CAULK FILL MATERIAL (ITEM 5) ON TOP SURFACE OF FLOOR OR BOTH SURFACES OF WALL. METAL JACKET TO BE USED IN ADDITION TO ANY OTHER JACKETING MATERIAL WHICH MAY BE REQUIRED OR DESIRED ON THE PIPE INSULATION. *BEARING THE UL CLASSIFICATION MARKING

CELLULAR CLASS INSULATED METALLIC PIPE

WATFORD

ENGINEERING

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

Bay District Schools RUTHERFORD HIGH SCHOOL	BUILDING Z HVAC KENUVATION 1000 School Ave., Panama City, Florida 32401
PROJECT NUMBER: DATE: DRAWN BY: DESIGNED BY:	2022-042 05-24-2024 SLD/DNW SLD/DNW
HVAC FIRE- Wall Penet Detail	RATED RATION _S

NOTE: ALL SYSTEMS DETAILED ON MECHANICAL PENETRATIONS SHEETS ARE BASED ON THE MANUFACTURERS SPECIFIED AS BASIS OF DESIGN AND APPLY TO MECHANICAL, FIRE PROTECTION, AND PLUMBING. THE CONTRACTOR SHALL SUBMIT A PENETRATIONS PACKAGE DETAILING EACH PENETRATION AND PRODUCTS TO BE USED TO THE PERMITTING AUTHORITY FOR THE ACTUAL SYSTEMS TO BE USED.

22-042 IENTS I-2024			
202 IRUCTION DOCUN 05-24			
CONST		<u> </u>	
		1 2. A	ALL SEQ
		3. A R	ll Wiri Equire
		4. A 5. 4	
		7. V V	
		ο. μ	OCATIO
		8. (CONDU
_		9. N	
		10. V E	
		TI. T T	RIM PIE
		12. P	
		17. T	ROVIDE
	VARIABLE VOLUME AHU	15. T S	HIS PRO Eparat Assist a
	STARTING AND STOPPING OF EQUIPMENT SHALL BE ACCOMPLISHED THROUGH A "HAND-OFF-AUTO" SWITCH LOCATED ON FACE OF DDC CONTROL		
/ ENTITY NOT Arked on Any Right 2020	PANEL. AN ALARM SHALL BE POSTED TO THE DDC SYSTEM ANYTIME THE HOA SWITCH IS INDEXED TO THE "HAND" OR "OFF" POSITIONS. WITH THE HOA SWITCH IN THE "AUTO" POSITION, THE UNIT SHALL BE STARTED AUTOMATICALLY BY THE DDC SYSTEM AND ALL CONTROLS ACTIVATED SUBJECT TO FIRE ALARM RELAY, SAFETIES AND OVERLOADS.		
AISSION BY ANY ND SHALL BE MA ING, INC. COPY	OCCUPIED MODE: OPEN OUTSIDE AIR DAMPER AND START EXHAUST FANS INDICATED WHENEVER THE BUILDING IS IN OCCUPIED MODE.		
PRIOR WRITTEN PERM Ngineer. This legen . Watford Engineer	COOLING COIL FREEZE PROTECTION: THE DDC SYSTEM SHALL CLOSE THE OUTSIDE AIR DAMPER ANYTIME THE COOLING COIL ENTERING AIR TEMPERATURE FALLS BELOW 40°F LONGER THAN 5 MINUTES. THE LOW LIMIT FREEZE STAT SHALL STOP THE AHU FAN MOTOR ANYTIME THE COOLING COIL ENTERING AIR TEMPERATURE FALLS BELOW 35°F.		
IOT BE USED WITHOUT ATIONSHIP WITH THE E N WHOLE OR IN PART.:	DISCHARCE TEMPERATURE CONTROL: THE DDC SYSTEM SHALL MODULATE THE CHILLED WATER VALVE AS REQUIRED TO MAINTAIN THE DISCHARCE AIR TEMPERATURE AT SET POINT (REFER TO AHU SCHEDULE). WHEN MINIMUM SPEED IS REACHED AND THERE IS A CALL FOR HEATING FROM ANY ZONE, THE DDC SHALL RESET SUPPLY AIR TEMPERATURE UP IN 2°F INCREMENTS EVERY FIVE MINUTES TO A MAXIMUM OF 65°F. THE DDC SHALL REVERSE SUPPLY AIR RESET UPON A CALL FOR COOLING OR WHEN RETURN AIR RH RISES ABOVE 57°F DEW POINT (ADJUSTABLE).		
CONFIDENTIAL AND SHALL N IAVING A CONTRACTUAL REU REPRODUCTIONS HEREOF I	FAN SPEED CONTROL: SUBJECT TO THE DUCT MOUNTED HIGH LIMIT STATIC PRESSURE SENSORS, THE ADJUSTABLE VARIABLE FREQUENCY DRIVE SHALL MODULATE FAN SPEED AS REQUIRED TO MAINTAIN A CONSTANT STATIC PRESSURE AT THE DUCT MOUNTED STATIC PRESSURE SENSOR. THE DUCT STATIC PRESSURE SET POINT SHALL BE SET AT THE MINIMUM REQUIRED FOR TEST AND BALANCE. WHEN NONE OF THE TU'S ASSOCIATED WITH THE AHU HAVE BEEN IN FULL COOLING MODE FOR FIVE MINUTES, THE DDC SHALL RESET THE DUCT STATIC PRESSURE DOWN 0.15". AHU AIRFLOW SHALL BE LIMITED TO SCHEDULED MAXIMUM AND MINIMUM VALUES. AHU FAN SHALL RUN CONTINUOUSLY DURING OCCUPANCY.		
	OUTSIDE AIR CONTROL: THE DDC SYSTEM, WITH OA DUCT MOUNTED FLOW MEASURING STATION, SHALL MODULATE RA AND OA DAMPERS AS REQUIRED TO MAINTAIN OUTSIDE AIR QUANTITY AT SET POINT RECARDLESS OF THE TOTAL AIR FLOW OF THE AIR HANDLING UNIT AT ANYTIME. READOUT OF OUTSIDE AIR QUANTITY SHALL BE IN CFM. OUTSIDE AIR DAMPER SHALL BE OPENED TO ITS BALANCED POSITION DURING OCCUPIED CYCLES. UPON FAILURE THE OA DAMPER SHALL BE NORMALLY CLOSED. WHENEVER THE AHU OPERATES DURING UNOCCUPIED MODE, THE OA DAMPER SHALL REMAIN CLOSED.		
	UNOCCUPIED MODE: THE OA DAMPER SHALL SHUT AND THE FAN SHALL CYCLE UPON A CALL FOR DEHUMIDIFICATION, COOLING, OR HEATNG FROM ANY SPACE. THE DDC SHALL HAVE A SEPARATE ADJUSTABLE SET POINT FOR UNOCCUPIED HUMIDITY CONTROL BASED ON THE SPACE MOUNTED TEMPERATURE AND HUMIDITY SENSOR.	Г	
	INTERLOCKED EXHAUST FANS: INTERLOCKED EXHAUST FANS SHALL OPERATE ONLY DURING OCCUPIED TIMES.		<u>INIE</u> EX
	MONITORED ZONES: PROVIDE ROOM TEMPERATURE SENSOR IN DATA CLOSETS. THE DDC SHALL MONITOR SPACE TEMPERATURES IN ALL AREAS.	L	
			>
-	(DPS)		ן (
		Ц ні	
	AIR (SPT) (SPT) (SPT) (S	;PT)	(
			.ters
	OUTSIDE AIR 1		RI /
	M400	SCAL	E: NC

DIRECT DIGITAL CONTROLS GENERAL NOTES

NTRACTOR SHALL PROVIDE NEW DDC CONTROLLERS FOR ALL NEW EQUIPMENT. THE NEW CONTROLLERS SHALL TIE INTO THE EXISTING TRANE FRONT END AND SHALL PERFORM THE TED SEQUENCES, ALL OTHER FUNCTIONS REQUIRED BY THE CONTRACT DOCUMENTS, AND ALL OTHER FUNCTIONS REQUIRED FOR A COMPLETE AND FUNCTIONAL SYSTEM.

QUENCES ARE SUBJECT TO SAFETIES. DDC CONTRACTOR SHALL PROVIDE ALL NECESSARY AND CUSTOMARY SAFETIES.

RING EXPOSED IN MECHANICAL ROOMS, INSIDE WALLS, OR IN FINISHED SPACES SHALL BE IN CONDUIT. ALL CONDUIT SHALL BE IN ACCORDANCE WITH ELECTRICAL SPECIFICATIONS, EMENTS FOR 120 VAC CIRCUITS.

INTROL TUBING SHALL BE RUN IN CONDUIT. ALL CONDUIT SHALL BE IN ACCORDANCE WITH ELECTRICAL SPECIFICATIONS, REQUIREMENTS FOR 120 VAC CIRCUITS.

LLS SHALL BE 316 STAINLESS STEEL AND SHALL BE INSTALLED IN NEW THREDOLETS WHETHER INSTALLED IN NEW OR EXISTING PIPING. IN CHILLED WATER PIPING PROVIDE NEW WELLS XTENDED NECK TO SUIT INSULATION THICKNESS.

C CONTRACTOR IS CO-RESPONSIBLE, ALONG WITH THE TAB CONTRACTOR FOR COORDINATING THE PROPER INSTALLATION OF WELLS, PRESSURE TAPS, AND P/T TAPS IN ALL ONS INDICATED AND OTHERWISE AS REQUIRED FOR A COMPLETE AND FULLY FUNCTIONAL SYSTEM.

IC CONTRACTOR AND THE TAB CONTRACTOR SHALL UTILIZE P/T'S TO CALIBRATE INSTRUMENTS TO CERTIFIED PRESSURE GACES, PRESSURE METERS AND THERMOMETERS.

UIT SHALL BE RUN PERPENDICULAR AND PARALLEL TO BUILDING LINES IN A FIRST CLASS WORKMANSHIP LIKE MANNER.

POSED CONDUIT SHALL BE USED IN FINISHED SPACES WITHOUT APPROVAL OF THE OWNER AND ENCINEER.

E EXISTING CONTROLS DEVICES ARE REMOVED AND THE EXISTING LOCATION IS NOT TO BE REUSED, THE CONTRACTOR SHALL PROVIDE A BLANK COVER PLATE TO MATCH G ROOM DEVICES.

E NEW DEVICES REPLACING EXISTING DEVICES DO NOT FULLY COVER THE FOOTPRINT OF THE EXISTING DEVICE, THE CONTRACTOR SHALL PROVIDE AN ESCUTCHEON OR IECE TO COVER THE UNFINISHED SURFACE. AS AN ALTERNATE, THE CONTRACTOR MAY PAINT THE ENTIRE WALL THAT THE DEVICES RESIDES UPON TO MATCH EXISTING

DE OPERATING SCHEDULE FOR EACH AHU. PROVIDE SEPARATE OPERATING SCHEDULE FOR OUTSIDE AIR FOR EACH AHU.

E DUCT ACCESS DOOR AT EACH AIRFLOW MEASURING STATION TO ALLOW SERVICE AND INSPECTION OF DUCT MOUNTED UNIT.

E DUCT ACCESS DOOR AT EACH CONTROL DAMPER TO ALLOW SERVICE AND INSPECTION OF DAMPER MECHANISM.

ROJECT SHALL INCLUDE COMMISSIONING OF THE HVAC, CONTROLS, AND RELATED ELECTRICAL SYSTEMS. THE SERVICES OF THE COMMISSIONING AUTHORITY ARE PROVIDED UNDER TE CONTRACT. UNDER THIS CONTRACT, THE PRIME CONTRACTOR, SUBCONTRACTORS, AND EQUIPMENT MANUFACTURERS SHALL PROVIDE LABOR AND MATERIAL AS REQUIRED TO AND PARTICIPATE IN THE COMMISSIONING PROCESS FOR THE SCOPE OF WORK AS DESCRIBED IN SECTION 15995 OF THE PROJECT SPECIFICATIONS.

				AN	IALO	oc						DIO	CIT/	٩L						5	iys [.]	TEN	/IS	FEA	SYSTEMS FEATURES										
		IN	PUT	-		0	JTP	UT	1	NP	UT		OUTPUT						AI	AR	MS	;		PROGRAMS											
CRAPHIC	TEMPERATURE	CFM	STATIC PRESSURE	ION COUNT	HUMIDITY	DDC	SPEED	SET POINT ADJ.	FAULT	STATUS	FILTER STATUS	SMOKE	START/STOP	OPEN/CLOSE	LOCK OUT	ENABLE/DISABLE	HICH/LOW	HICH ANALOC	LOW ANALOC	SENSOR FAIL	COMM. FAIL	DIAGNOSTICS	LATCHING	TIME SCHEDULING	RUN TIME	TIMED OVERRIDE	MODE CONTROL								
x																					X	X	x	x	X		x								
							X		x	X			x							X															
					x													Х	X	x															
									x											x															
	x																	x	x	x															
	x																	х	x	x															
						x																													
	x																	х	x	x															
	x																	x	x	x															
											x							x		x															
		X		x														X	x	Х															
						x																													
			X															X	x	X															
										x				X																					
																	x	X																	
									x				x																						
	x																	X	x	x															
	x				x													x	x	x															

VAR

SYSTEM POINT DESCRIPTION David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

4452 Clinton Street, Marianna, Florida 32446

850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

SHALL NOT B UAL RELATION FREAF IN WH

VARI	
SYSTEM POINT DESCRIPTION	
	CRAPHIC
CONTROL PANEL	x
FAN CONTROL	
RETURN AIR	
BI-POLAR IONIZATION	
MIXED AIR	
CHWC DISCHARGE AIR	
COOLING VALVE	
CHWS	
CHWR	
HWC DISCHARGE AIR	
HEATING VALVE	
HWS	
HWR	
FILTERS	
OUTSIDE AIR	
RETURN AIR DAMPER	
DUCT STATIC PRESSURE	
OUTSIDE AIR DAMPER	
HLDPS	
EXHAUST FANS	
DATA CLOSET	
AB MODE PANEL	
SPACE SENSOR LOCATION NOTED ON PLANS)	

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

				AN	IAL	00						DI	CIT	AL				SYSTEMS FEATURES											
		IN	PUT			0	UTF	VUT		INP	UT			οι	JTP	UT			Al	_AR	MS	;		PROCRAMS					
	TEMPERATURE	CFM	STATIC PRESSURE	ION COUNT	HUMIDITY	DDC	VARIABLE FREQ. DRIVE	SET POINT ADJ.	FAULT	STATUS	FILTER STATUS	LAB MODE	STARI/STOP	OPEN/CLOSE	LOCK OUT	LAB/CLASS	HIGH/LOW	HICH ANALOC	LOW ANALOC	SENSOR FAIL	COMM. FAIL	DIACNOSTICS	LATCHINC	TIME SCHEDULING	RUN TIME	TIMED OVERRIDE	MODE CONTROL		
<																					X	X	x	x	X		x		
							x		x	X			X							X									
_					X													X	X	X									
									X											X									
_	X																	X	X	X									
_	X																	X	X	X									
_						x																							
	X																	X	X	X				_					
	X																	X	X	X									
	Х																	Х	X	X									
						X																							
	X																	X	X	X									
	X																	X	X	X									
	_		1						-	_	X							X		X									
	_	X		X														X	X	X									
			v	1		X												v	V	V									
			^							V				v		_		X	X	X									
										X				X			V	V											
													v					*											
	Y								^				^					Y	Y	Y				_					
	^											Y				x		^	^	^ Y							x		
_		v		Y								~				~		Y	Y	^ V							~		
		^		^														^	^	^									

SEQUENCE OF OPERATION SINGLE DUCT TERMINAL UNIT

EACH TERMINAL UNIT SHALL BE PROVIDED WITH A UNIT CONTROL MODULE (UCM). THE UCM SHALL BE FIELD OR FACTORY MOUNTED. THE ELECTRICAL CONTRACTOR SHALL PROVIDE 120V POWER TO EACH TERMINAL UNIT.

UNIT AIRFLOW SHALL BE MONITORED BY AN INTEGRAL, MULTIPLE POINT, AVERAGING FLOW SENSING DEVICE AND A TRANSDUCER TO MAINTAIN AIRFLOW WITHIN 5% OF RATED CFM DOWN TO A MINIMUM CFM AS SCHEDULED, INDEPENDENT OF CHANCES IN SYSTEM STATIC PRESSURE.

COOLING MODE: THE UCM SHALL MONITOR THE ZONE TEMPERATURE AGAINST ITS SET POINT (74°F ADJUSTABLE) AND MODULATE THE DAMPER TO MEET THE ZONE SETPOINT. IF THE TU CALLS FOR FULL COOLING AND CANNOT REACH MAXIMUM AIRFLOW FOR FIVE MINUTES, THE DDC SHALL RESET THE AHU STATIC PRESSURE UP 0.15".

HEATING MODE: THE DAMPER SHALL MODULATE TO THE HEATING AIRFLOW (SEE TU SCHEDULES) AND THE HOT WATER VALVE SHALL MODULATE AS REQUIRED TO MAINTAIN SPACE TEMPERATURE (COOLING SET POINT MINUS 3°F).

THE ZONE TEMPERATURE SENSOR WITH SET POINT ADJUSTMENT SHALL BE PROVIDED WITH NICHT SETBACK OVERRIDE, AND A COMMUNICATIONS JACK. UPPER AND LOWER ZONE TEMPERATURE SET POINTS SHALL BE SET BY THE DDC.

OCCUPIED/UNOCCUPIED MODE: CONTROLS CONTRACTOR SHALL CONSULT WITH OWNER FOR SPACE TEMPERATURE SETPOINTS.

OVERRIDE MODE: THE OVERRIDE TIMER SHALL PLACE THE TU AND AHU IN OCCUPIED MODE FOR ONE HOUR (ADJUSTABLE).

ION SENSOR: TU-1.17 AND 2.07 SHALL BE EQUIPPED WITH A SUPPLY AIR MOUNTED ION SENSOR WITH ADJUSTABLE SETPOINT AND DIGITAL OUTPUT. THE DDC SHALL POST AN ALARM WHEN THE ION COUNT FALLS BELOW THE SETPOINT. INITIAL SETPOINT MINIMUM SHALL BE 5000 IONS/CC/SEC. DUCT SETPOINT SHALL BE CONFIRMED BY SPACE ION MEASUREMENTS AT A MINIMUM OF 2000 IONS/CC/SEC IN THE SPACE SERVED.

	N	G	jL	E		D	U	CI	- 1	Γ	J	P	Ċ		N	IT	S			S	T	I						
				AN	AL	OC						DI	CIT	AL						Ş	SYS	TEN	٨S	Fea	τU	RES	5	
		IN	PUT	ſ		0	UTP	UT	INPUT OUTPUT								ALARMS							PROGRAMS				
CRAPHIC	TEMPERATURE	IONS	CFM	HUMIDITY	OPEN	VARIABLE FREQ. DRIVE	SET POINT ADJ.		PNEU. TRANSDUCER	STATUS ON/OFF	FILTER STATUS	IONS	START/STOP	OPEN/CLOSE	LOCKOUT	ENABLE/DISABLE	HICH/LOW	HICH ANALOC	LOW ANALOC	SENSOR FAIL	COMM. FAIL	DIACNOSTICS	LATCHINC	TIME SCHEDULINC	RUN TIME	TIMED OVERRIDE	MODE CONTROL	
																					x	x	x	x	x	x	x	
	x											x						X	X	х								
	x						x											x	x	x								
					х																							
					х																							
			x																	x								

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

DRAWING IS ANY ENTITY NOT E MARKED ON ANY DPYRIGHT 2020

SEQUENCE OF OPERATION SINGLE DUCT TERMINAL UNIT

EACH TERMINAL UNIT SHALL BE PROVIDED WITH A UNIT CONTROL MODULE (UCM). THE UCM SHALL BE FIELD OR FACTORY MOUNTED. THE ELECTRICAL CONTRACTOR SHALL PROVIDE 120V POWER TO EACH TERMINAL UNIT.

UNIT AIRFLOW SHALL BE MONITORED BY AN INTEGRAL, MULTIPLE POINT, AVERAGING FLOW SENSING DEVICE AND A TRANSDUCER TO MAINTAIN AIRFLOW WITHIN 5% OF RATED CFM DOWN TO A MINIMUM CFM AS SCHEDULED, INDEPENDENT OF CHANCES IN SYSTEM STATIC PRESSURE.

COOLING MODE: THE UCM SHALL MONITOR THE ZONE TEMPERATURE AGAINST ITS SET POINT (74°F ADJUSTABLE) AND MODULATE THE DAMPER TO MEET THE ZONE SETPOINT. IF THE TU CALLS FOR FULL COOLING AND CANNOT REACH MAXIMUM AIRFLOW FOR FIVE MINUTES, THE DDC SHALL RESET THE AHU STATIC PRESSURE UP 0.15".

HEATING MODE: THE DAMPER SHALL MODULATE TO THE HEATING AIRFLOW (SEE TU SCHEDULES) AND THE HOT WATER VALVE SHALL MODULATE AS REQUIRED TO MAINTAIN SPACE TEMPERATURE (COOLING SET POINT MINUS 3°F).

THE ZONE TEMPERATURE SENSOR WITH SET POINT ADJUSTMENT SHALL BE PROVIDED WITH NICHT SETBACK OVERRIDE, AND A COMMUNICATIONS JACK. UPPER AND LOWER ZONE TEMPERATURE SET POINTS SHALL BE SET BY THE DDC.

OCCUPIED/UNOCCUPIED MODE: CONTROLS CONTRACTOR SHALL CONSULT WITH OWNER FOR SPACE TEMPERATURE SETPOINTS.

OVERRIDE MODE: THE OVERRIDE TIMER SHALL PLACE THE TU AND AHU IN OCCUPIED MODE FOR ONE HOUR (ADJUSTABLE).

ION SENSOR: TU-2.01 SHALL BE EQUIPPED WITH A SUPPLY AIR MOUNTED ION SENSOR WITH ADJUSTABLE SETPOINT AND DIGITAL OUTPUT. THE DDC SHALL POST AN ALARM WHEN THE ION COUNT FALLS BELOW THE SETPOINT. INITIAL SETPOINT MINIMUM SHALL BE 5000 IONS/CC/SEC. DUCT SETPOINT SHALL BE CONFIRMED BY SPACE ION MEASUREMENTS AT A MINIMUM OF 2000 IONS/CC/SEC IN THE SPACE SERVED.

SEQUENCE OF OPERATION LAB CLASSROOM TERMINAL UNIT

THE FOLLOWING SEQUENCE OF OPERATION APPLIES TO TU-1.02, 1.11, AND 1.12 ONLY.

EACH TERMINAL UNIT SHALL BE PROVIDED WITH A UNIT CONTROL MODULE (UCM). THE UCM SHALL BE FIELD OR FACTORY MOUNTED. THE ELECTRICAL CONTRACTOR SHALL PROVIDE 120V POWER TO EACH TERMINAL UNIT.

UNIT AIRFLOW SHALL BE MONITORED BY AN INTEGRAL, MULTIPLE POINT, AVERAGING FLOW SENSING DEVICE AND A TRANSDUCER TO MAINTAIN AIRFLOW WITHIN 5% OF RATED CFM DOWN TO A MINIMUM CFM AS SCHEDULED, INDEPENDENT OF CHANCES IN SYSTEM STATIC PRESSURE.

COOLING MODE: THE UCM SHALL MONITOR THE ZONE TEMPERATURE AGAINST ITS SET POINT (74°F ADJUSTABLE) AND MODULATE THE DAMPER TO MEET THE ZONE SETPOINT. IF THE TU CALLS FOR FULL COOLING AND CANNOT REACH MAXIMUM AIRFLOW FOR FIVE MINUTES, THE DDC SHALL RESET THE AHU STATIC PRESSURE UP 0.15".

LAB MODE: THE DDC SHALL RESET THE MINIMUM AIRFLOW RATE OF THE TERMINAL UNIT TO THE DESIGN COOLING AIRFLOW UNTIL THE CALL FOR LAB MODE HAS EXPIRED.

HEATING MODE: THE DAMPER SHALL MODULATE TO THE HEATING AIRFLOW (SEE TU SCHEDULES) AND THE HOT WATER VALVE SHALL MODULATE AS REQUIRED TO MAINTAIN SPACE TEMPERATURE (COOLINC SET POINT MINUS 3°F).

THE ZONE TEMPERATURE SENSOR WITH SET POINT ADJUSTMENT SHALL BE PROVIDED WITH NICHT SETBACK OVERRIDE, AND A COMMUNICATIONS JACK. UPPER AND LOWER ZONE TEMPERATURE SET POINTS SHALL BE SET BY THE DDC.

OCCUPIED/UNOCCUPIED MODE: CONTROLS CONTRACTOR SHALL CONSULT WITH OWNER FOR SPACE TEMPERATURE SETPOINTS.

OVERRIDE MODE: THE OVERRIDE TIMER SHALL PLACE THE TU AND AHU IN OCCUPIED MODE FOR ONE HOUR (ADJUSTABLE).

ION SENSOR: TU-1.12 SHALL BE EQUIPPED WITH A SUPPLY AIR MOUNTED ION SENSOR WITH ADJUSTABLE SETPOINT AND DIGITAL OUTPUT. THE DDC SHALL POST AN ALARM WHEN THE ION COUNT FALLS BELOW THE SETPOINT. INITIAL SETPOINT MINIMUM SHALL BE 5000 IONS/CC/SEC. DUCT SETPOINT SHALL BE CONFIRMED BY SPACE ION MEASUREMENTS AT A MINIMUM OF 2000 IONS/CC/SEC IN THE SPACE SERVED.

SCALE: NONE

LAB CLASSROOM

SINGLE DUCT TU POINTS LIST

	ANALOG								DICITAL								SYSTEMS FEATURES											
	INPUT				OUTPUT			INPUT			OUTPUT					ALARMS						PROGRAMS				MS		
CRAPHIC	TEMPERATURE		CFM	HUMIDITY	OPEN	Variable Freq. Drive	SET POINT ADI.		PNEU. TRANSDUCER	STATUS ON/OFF	FILTER STATUS	SNOI	START/STOP	OPEN/CLOSE	I.OCKOUT	ENABLE/DISABLE	HICH/LOW	HICH ANALOC	LOW ANALOC	SENSOR FAIL	COMM. FAIL	DIACNOSTICS	LATCHING	TIME SCHEDULING	RUN TIME	TIMED OVERRIDE	MODE CONTROL	
																					x	x	x	x	x	x	x	
	x											x						x	x	x								
	x						x											x	x	x								
					x																							
					х																							
			x																	х								

4452 Clinton Street, Marianna, Florida 32446 850.526.3447 www.watford-engineering.com Florida Certificate of Authorization: 27825

David N Watford, PE Florida License 58208

CONSTRUCTION DOCUMENTS

U	JCT LAB CLASSROOM TU POINTS LIST																												
	ANALOG								DICITAL									SYSTEMS FEATURES											
		INPUT			OUTPUT			INPUT			OUTPUT				ALARMS						PROCRAMS								
CRAPHIC	TEMPERATURE		CHM	HUMIDITY	OPEN	Variable freq. Drive	SET POINT ADJ.		PNEU. TRANSDUCER	STATUS ON/OFF	FILTER STATUS	IONS	STARI/STOP	OPEN/CLOSE	LOCKOUT	ENABLE/DISABLE	HICH/LOW	HICH ANALOC	LOW ANALOC	SENSOR FAIL	COMM. FAIL	DIACNOSTICS	LATCHING	TIME SCHEDULING	RUN TIME	TIMED OVERRIDE	MODE CONTROL		
																					x	x	Х	x	x	x	x		
	x											x						x	x	X									
	x						X											X	x	X									
					X																								
					х																								
			x																	X									

200	MEDIA CENTER	209	LARGE GROUP PRO
200A	CORRIDOR	210	DARK ROOM
201	ENTRY VESTIBULE	211	CLASSROOM
202	PERIODICALS	212	CLASSROOM
203	AUDIO VIDEO STORAGE	213A	CLASSROOM
203A	CER	213B	CLASSROOM
204	CUSTODIAN	214	REST ROOM
205	OFFICE	215	REST ROOM
206	MEDIA PRODUCTION	218	WORK ROOM
207	CONFERENCE	223	ELECTRICAL CLOSE
208	SMALL GROUP PROJECTS		

)0A	TEACHER PLANNING/STORAGE	
)1	CLASSROOM	
)1A	STORAGE	
)2	CUSTODIAL	
)3	CLASSROOM	
)3A	STORAGE	
)4	CLASSROOM	
)5	CLASSROOM	
)5A	STORAGE	
)6	COMMUNICATIONS/SECURITY	
)7	COMMUNICATIONS	
)8	CLASSROOM	
)9	CLASSROOM	

)A	STORAGE
)	CLASSROOM
)A	STORAGE
1	NURSES OFFICE
A	REST ROOM
IB	REST ROOM
2	CLASSROOM
2A	STORAGE
3	REST ROOM
1	COMMUNICATION
5	REST ROOM
3	CLASSROOM
SA	STORAGE
7	CLASSROOM
)	CLASSROOM

